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Abstract: Automatic Control Systems 
are far and wide used in all modern and 
industrialized societies. Devices designed to 
control automatized tasks are each time more 
present from small plants to large industrial 
buildings. The development of mathematical 
models is a compulsory task for whom aim at 
analyzing or design any control systems. These 
mathematical models must reproduce some 
performance measures as accurate as possible. 
So, no matter the physical nature of the process 
we aim at control, an accurate mathematical 
model must be evaluated. So, the development 
of mathematical models can be considered an 
hi-level step over the physical nature of the 
system that we aim at analyze or design. For 
this reason the study of Systems Theory and 
Control Systems are considered transversal 
areas of the knowledge and them studies are 
compulsory in many branches of sciences and 
technologies in many universities all over the 
world. In spite of normal systems are non-
linear the linearization procedure simplify the 
analysis and design of control systems and, 
depending on the accuracy of the model can 
give us good results.      
Keywords: Physical Systems, mathematical 
models, differential equations.

INTRODUCTION
Systems Theory is composed of formal 

methods for the study, design, analytical 
and homogenized interpretation of physical 
systems in our daily lives, regardless of their 
nature (Ribeiro, M. (2002)).

Automatic control systems are increasingly 
present in all industrialized societies, so it 
is easy to understand that Systems Theory 
includes topics and methodologies that are 
useful in different branches of science and 
technology.

A more palpable framework of Systems 
Theory can be presented in the context of 
designing a control system (Ribeiro, M. 

(2002)). Thus, regardless of the size or physical 
nature of the system to be controlled, the 
design of a controller must take into account 
the following phases:

•	 Specification

•	 Modeling

•	 Analysis

•	 Specification verification

•	 Synthesis
The controller to be synthesized (or 

designed) must take into account a list of 
specifications that must be met by the system 
once it is controlled. A system (or process) to 
be controlled will be more or less complex. 
The design of controllers is sometimes an 
iterative procedure such that, until reaching 
the final solution, intermediate solutions 
are tried, which may result in operations 
that are more or less harmful to the process 
to be controlled. Therefore, the direct use of 
the process that is intended to be controlled 
during the controller synthesis procedure can 
cause serious damage, this way, the modeling 
phase is assumed with special importance. 
The use of an adequate model of the process to 
be controlled has the advantage of preserving 
it during the controller synthesis phase.

In addition, in a laboratory environment, 
devices are generally available that somehow 
model everyday processes.

A model generally consists of a 
simplification of reality and must take into 
account the specifications to be met in the 
controller synthesis phase.

Once a model has been established for 
the process to be controlled, the analysis 
phase is carried out to verify whether the list 
of specifications is met or not. At that time, 
depending on the degree of verification of 
the specifications, it will be decided (or not) 
to design a controller. This project consists of 
the association of devices and determination 
of the respective parameters in order to verify 
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the specifications.
Systems Theory is present, to a greater 

or lesser extent, in all phases of the design 
of an automatic control system, regardless 
of its physical nature. Although the initial 
approaches were about electrical or 
mechanical systems, currently System Theory 
finds applicability in a wide range of areas 
of knowledge, including the social sciences 
(Ribeiro, M. (2002)).

In this article, using examples, 
mathematical representations of systems that 
could be included in the modeling stage will 
be studied; in this context, this article consists 
of the sections described below. Section 2 
focuses on the mathematical representation of 
systems, with emphasis on continuous linear 
and time-invariant SLIT systems. In section 
3 it will be exemplified how different physical 
realities are modeled by the same mathematical 
reality. In section 4 a standardizing procedure 
for representing systems will be presented. 
The article ends with section 5 where it will 
be concluded that different physical realities 
can be described by the same mathematical 
reality.

MATHEMATICAL 
REPRESENTATION OF SYSTEMS
The systems that are usually found in 

everyday life are generally non-linear. Linear 
systems correspond to approximations of 
reality that, to a greater or lesser extent, can 
be considered quite satisfactory, resulting in 
models whose accuracy must be taken into 
account, in view of the purpose for which they 
are intended. It can thus be said that a model 

is an abstraction of physical reality, extracting 
from it the characteristics that are considered 
relevant for the purpose in view, taking into 
account simplifying hypotheses.

In the scope of Systems Theory, the model 
is called a system, and this constitutes its basic 
entity on which it (Systems Theory) focuses 
(Ribeiro, M. (2002)).

The simplified character of the model in 
relation to the physical system that originated 
it explains the fact that, from the same physical 
system, several models can be extracted 
depending on the issues related to the physical 
system that are intended to be resolved. For 
example, considering the physical (electrical) 
transistor system, it is known that the model 
for low frequencies is different from the 
model for high frequencies, so the model to be 
adopted must take into account the frequency 
range where it is intended to work.

The simplifying assumptions in the 
linearization of a system must take into account 
the operating point of the non-linear physical 
system for which the model is intended to be 
extracted. For example, the dynamics of the 
gravitational pendulum can be linearized by 
assuming that for small elongations the sine of 
an angle can be approximated by its amplitude.

The linearization of a model results in a 
considerable simplification in terms of design 
and use of the mathematical tools necessary 
for its analysis. For this reason, this section is 
developed assuming linear and time-invariant 
systems, SLIT.

In this context, consider a continuous 
linear and arbitrary time-invariant system, 
described by the linear differential equation 
and constant coefficients (1).
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It is a system of order equal to the order 
of the differential equation, (order n), where 
the input is the sign u(t) and the output is the 
signal y(t).

The linearity of the system is reflected in 
the linearity of the corresponding differential 
equation (1) and the invariance in time is 
reflected in the fact that the coefficients are 
constant: ai and bj.

The differential equation (1) completely 
describes the corresponding system, meaning 
that, from it, the input signal is known. u(t) 
and n, initial output values y(t) and of its n-1, 
first derivatives, it is possible to determine, in 
a unique way, the temporal evolution of the 
system output, y(t).

Starting from (1) one can obtain 
representation in terms of input-output (or 

external representation) and representation in 
terms of state (or internal representation).

Looking at (1) from an input-output 
perspective and taking into account that the 
Laplace transform can be used to solve linear 
differential equations, then, one can obtain 
an external representation of the system that 
results in the quotient between the Laplace 
transform from the exit, Y(s), and the Laplace 
transform of the input, U(s). This external 
representation is called the transfer function 
which, for the system represented by (1), 
results in (2), and at the initial instant the 
output is considered null y(t) as well as its: 
n-1, first derivatives (Dorf, R. and Bishop, R. 
(1995).

The differential equation (1) allows to 
obtain an alternative internal representation 
to the one expressed in (2). This internal 
representation is called a state model, 
accommodating, in addition to the input and 
output, the definition of internal variables. 
These internal variables are functions of time 
and state vector coordinates. X(t), may have 
physical meaning or be abstract mathematical 
entities: (Dorf, R. 
and Bishop, R. (1995)).

The choice of a representation, internal or 
external, is made according to the analysis or 
design techniques that are intended to be used 
within a possible procedure for controlling 
the system. Namely, the representation (2) 
allows calculating the output y(t) known 
at the input u(t) as long as the system starts 
from rest, that is, the initial conditions are 
null. However, many everyday situations exist 
in which the system does not start from rest 
but rather presents a non-zero initial state, in 

these circumstances model (2) proves to be 
incomplete, and an internal representation, or 
state model, by to accommodate the existence 
of non-zero initial conditions, proves to be 
adequate.

From the external representation (2) 
one can calculate an infinity of internal 
representations, (one for each set of state 
variables  to choose), 
one of which is represented by the simulation 
diagram in Figure 1.

Direct reading of Figure 1 allows 
establishing the equation of state (3) and the 
output equation (4).    
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Figure 1 – Simulation diagram regarding the transfer function (2).

Figure 2 – Electric Circuit.

Figure 3 – Mechanical translational system
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The pair of equations (3) and (4) can be 
written in compact form (5).

Defining:
•	 A - dynamics matrix [nxn],

•	 B – entry matrix [nxq], q is the number 
of inputs,

•	 C – exit matrix [pxn], p is the number 
of outputs,

•	 D - matrix [pxq] matrix (D=0, for this 
case).

The SLIT representation developed in this 
section is generic, for continuous systems, and 
there was no need to specify its physical nature; 
similar study can be done for discrete systems. 
In these circumstances the linear differential 
equation with constant coefficients (1) would 
give way to an equation with differences, 
linear and with constant coefficients. The 
calculation of the Laplace transforms of (1) 
would be replaced by the calculation of the 

transform z of the equation with differences, 
giving rise to a discrete transfer function 
similar to the one presented in (2) but being a 
function of z. The simulation diagram (Figure 
1) would give way to a simulation diagram in 
which the integrators would be replaced by 
discrete-time unit delay elements represented 
by Z-1. The discrete-state model analogous to 
the continuum (5) is given by (6), with the 
matrices A, B, C and D having similar names.

MATHEMATICAL MODELS OF 
PHYSICAL SYSTEMS
The transfer function as an external 

representation of systems in terms of input-
output and the state model where internal 
variables are defined (state variables) 
were presented in the previous section for 
continuous SLITs. It was clear in that section 
that the methodology exposed did not 
mention the physical nature of any particular 
system.
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This section presents examples of physical 
systems for which the corresponding 
mathematical representations will be 
calculated (D’Azzo, J. and Houpis, C. (1988)). 
Although these are examples of physical 
systems of different natures, it will be clear 
that they will be representable by the same 
mathematical model.

 
ELECTRIC SYSTEM
In this section, the system in Figure 2 

which consists of an electrical circuit.
This circuit consists of a coil of inductance L 

measured in Henry [H] connected to a parallel 
of a resistance R measured in Ohm [Ω] with 
a capacitor of capacity C measured in Farad 
[F]; the circuit is powered by a current source 
i(t). For this circuit, a transfer function and a 
state model will be determined, which will be 
confronted with the models represented by 
the expressions (2), (3) and (4).

In the external representation (transfer 
function), the voltage at the current source 
terminals is considered as input v1(t) and as 
output the voltage at the capacitor terminals 
v2(t). Since it is an electrical system, the 
fundamental laws of electrical circuit analysis 
(Dorf, R. (1993)) will be used to arrive at the 
transfer function (7).

The transfer function given by (7) is 
formally identical to the model expressed 
by (2) taking into account that the output Y 
corresponds to the voltage: V2, and the entry 
U corresponds to voltage: V1. Furthermore, 
the rational function (7) is obtained from the 
one presented in (2) making m=0, n=2 and 
defining the coefficients as follows:

Alternatively, an internal representation 
for the electrical circuit of Figure 2 can be 
established. For the values of the coefficients 
a0, a1 and b0, taking into account the state 
model presented in (3) and (4), it is possible 
to establish the state model for the electrical 
circuit of Figure 2, represented by the 
equation of state (8) and the output equation 
(9). The exit y(t) represents v2(t) and entry 
u(t) represents v1(t).

MECHANICAL SYSTEM
In this section, the translational mechanical 

system of Figure 3 will be studied.
It is a mass M measured in Kilogram [Kg] 

that moves on a horizontal surface along 
a straight line (X axis), by the action of a 
force f(t) measured in Newton [N] applied 
to a helical spring of elasticity constant K 
measured in [N/m] connected to the mass. The 
contact of the mass with the surface generates 
a friction of constant B measured in [Ns/m].

Analogously to what was done for the 
previous electrical example, a transfer 
function and a state model will be determined, 
which will be confronted with the models 
represented by the expressions (2), (3) and 
(4). 

Given the physical nature of the system 
under study, the laws of mechanics will be 
used to establish the differential equations 
that describe its dynamics (Ribeiro, M. 
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(2002)). Assuming as input the speed of the 
end of the spring where the force is applied: f, 
vF, and as output the velocity of the mass, vM, 
the transfer function (10) is determined from 
the differential equations obtained previously.

Similar to what happened with the 
electrical circuit, the transfer function now 
obtained corresponds to the one represented 
by (2) taking into account that the output Y 
corresponds to the speed VM and the input 
U corresponds to the speed VF. It is a 2nd 
order system with no zeros, so m=0 and n=2, 
thus, from (2) one obtains (10) by making the 
coefficients:

A state model for the system in Figure 3. 
Thus, particularizing the simulation diagram 
in Figure 1 for the coefficients a0, a1 and b0 it is 
then possible to establish the state equations 
(11) and the output (12).

The external representations in the form 
of transfer functions, respectively (7) and 
(10), as well as the internal representations 
in the form of state models, respectively (8) 
and (9), (11) and (12), serve basis for both 

analysis procedures and controller synthesis 
procedures. The choice of representation by 
transfer function or by state model depends 
on which techniques are intended to be used. 
Such representations allow studies both in the 
time domain and in the frequency domain.

UNIFORMIZED 
REPRESENTATION OF SYSTEMS
In the previous section, 2 physical systems 

of different natures were studied, electrical 
Figure 2, and mechanical Figure 3. Transfer 
functions and the respective state models 
were presented for such systems (Dorf, R. 
and Bishop, R. (1995)). In the case of SLIT, 
the transfer functions are in the form of (2) 
and the state models are in the form of (5). 
Given the similarity of the mathematical 
representations of these 2 different physical 
systems, the following question can be asked:

•	 Once a model has been obtained for a 
given system, are there other systems 
for which this model is suitable?

If the answer is affirmative, it may be asked 
whether the other systems may be of a different 
physical nature from the original system.

The examples presented in the previous 
section allow an affirmative answer to the 
question posed, insofar as the model arrived 
at for the electrical circuit is identical to the 
model arrived at for the mechanical system. 
Thus, it can be said that the other system for 
which the electrical system model is suitable is 
of a different (mechanical) nature.

In this context, focusing on electrical and 
mechanical systems, this section presents a 
methodology for, starting from an arbitrary 
mechanical system, to find an electrical 
system (circuit) whose mathematical model 
is identical to the mathematical model. of the 
mechanical system. Once the electrical circuit 
is found, it is said to be a system analogous to 
the mechanical system.

Let us consider the physical quantities 
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Table 1 Basic elements of electrical circuits and mechanical systems, their representations and laws that 
govern them.

Mass – Condenser M=C

Spring – Coil

Friction – Resistance

Table 2: Conditions to check for similar elements to be governed by the same model.
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involved in each of the systems in the previous 
section; for the electrical circuit the disturbance 
of the system is done at the expense of a current 
source while for the mechanical system the 
disturbance is done by the application of 
a force. Thus, it can be considered that the 
electric current in a circuit has an analogous 
function to a force in a mechanical system. 
In fact, both force and current propagate 
through elements, mechanical and electrical 
respectively. The respective measuring 
devices, dynamometer for measuring force 
and ammeter for measuring current intensity, 
are placed in series. Thus, in the search for 
analogies, it can be stated that the following 
physical quantities:

current intensity: i ~ Power, f

are analogous.
A similar reading can be taken for the 

electrical voltage in a circuit and the speed of a 
point in a mechanical system. Both quantities 
are measured in relation to a reference; the 
voltage at a circuit node is measured in relation 
to a reference node and the speed of a point 
is measured in relation to a reference that is 
considered stopped. Thus, in the search for 
analogies, it can be stated that the following 
physical quantities:

Electric tension, v ~ Speed, ve

are analogous.
Now consider the basic elements of Tab’s 

electrical circuits and mechanical systems. 1 
where the elementary laws that govern them 
are presented.

Based on the laws governing the mass M and 

the capacitor C, respectively, 1 

and ; then, assuming the previous 

1 
2 The absence of the negative sign in relation to what is shown in the table is due to the fact that now we are not considering 
the spring restitution force, but the external force that must be applied so that the springundergoes an elongation: x.

analogies (force, electric current and velocity, 
voltage), it can be said that:

•	 the mass model M is the same as the 
capacitor model C as long as the 
capacity of the capacitor is C=M.

Now consider the laws that govern the 
spring constant of elasticity: K and the 

inductance coil: L, respectively 
2 and . Deriving both members 

of the law that governs the spring and solving 

for speed, we have . Comparing 

this expression with the law that governs the 
coil and taking into account the previous 
analogies, it can be said that:

•	 the spring model K is the same as 
the coil model L provided that the 
inductance of the coil is .

Finally, notice the constant friction: B and 
in the resistance R, as well as the respective 

laws that govern them.,  and 

; so, taking into account the usual 
analogies it can be said that:

•	 the friction element model B is the 
same as the resistance model R as long 
as the resistance is .

In short, in Tab. 2 the conditions that must 
be verified between each pair of analogous 
elements are registered so that the model of 
an electrical circuit is equal to the model of 
the mechanical system.

At this point, it can be seen that, both for the 
transfer function (10) and for the state model 
(11) and (12), obtained for the mechanical 
system Figure 3, substituting their M, K and 
B parameters according to Tab. 2, result in 
the transfer function (7) and the state model 
(8) and (9) of the electrical circuit Figure 2. 
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Conversely, the models (transfer function 
and state model) arrived at for the electrical 
circuit result in the corresponding models for 
the mechanical system as long as the electrical 
parameters are replaced according to Tab. two.

CONCLUSIONS
We then come to the conclusion that we 

are dealing with distinct physical systems that 
are representable by the same mathematical 
model.

This conclusion can be extrapolated to 
systems of a nature other than electrical or 
mechanical, for example, systems as diverse 

as hydraulic or thermal are made up of basic 
elements that will have correspondence in 
terms of models with, for example, mechanical 
or electrical systems.

This conclusion allows us to say that:
•	 different physical realities are 

represented by the same mathematical 
reality  

This unifying conclusion has implications 
for the entire methodology that integrates 
Systems Theory, whether in terms of systems 
representation, analysis or synthesis.
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