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Abstract: A fundamental element in the 
international metrological system, which 
makes it possible to relate any pair of 
measurements (measurement or metrological 
statements), is the traceability chain in 
metrology. A measurement result that cannot 
be traced to a national standard and therefore to 
the international metrological system cannot 
be trusted. Two commonly used procedures 
to ensure the traceability of measurements 
to the international metrological system are 
the calibration of measurement instruments 
and the inter-comparisons of laboratories, 
which allow reaching agreements between 
the measurement standards. In this work 
we illustrate the use of the statistical 
methodology in the traceability chain, in 
order to determine the accuracy and precision 
of the measurements.  
Keywords: Calibration, Monte Carlo, Inter-
laboratory studies, Traceability, Reference 
value. 

INTRODUCTION
A basic principle in experimental studies is 

that measurements are not perfect, but have 
a certain uncertainty, even despite initially 
making an experimental design, to optimize 
the amount of information that the study can 
provide. Due to the magnitude of the studies 
and projects where measurements are made, 
it is very common that we must exchange 
measurement results, which leads us to 
consider the reliability of the measurement 
processes.

Inaccurate measurements, with a 
significant level of uncertainty, can generate 
economic losses when the measurements 
are related to a commercial exchange, or 
health risks, when they are measurements 
related to medical treatments. In order for 
measurement results to be comparable with 
each other, regardless of where and when 
the measurements are made, it is necessary 

that the measurement results be traceable 
to national or international standards, or to 
accepted international references.

Metrological traceability consists of an 
uninterrupted and documented chain of 
calibrations, up to a reference, which can 
be a measurement pattern, a measurement 
procedure, or the practical realization of the 
definition of a unit of measurement, through 
documented measurement procedures, that 
makes it possible to relate the measurement 
results, to the units of the International 
System, with a measurement uncertainty, 
known and documented. 

Two procedures that allow traceability 
of measurements are the calibration of 
measurement instruments and the key 
comparison of metrology laboratories. Each 
stage in the chain of comparisons typically 
involves the calibration of a measurement 
device or equipment using a more accurate 
reference standard. The evaluation of the 
degrees of equivalence of the results of the 
participating laboratories, with respect to

Of the reference value that results, is 
important because it allows comparing 
the measurement capacity of the different 
laboratories. Some problems of inter-
laboratory evaluations have been discussed 
in the literature, as can be seen in Kacker et 
al. (2002), and Kacker et al. (2003), Tomán 
and Possolo (2009), and Rukhin (2009). In 
the case of calibration processes, the analysis 
of measurement data has traditionally been 
developed using the delta method, which in 
the metrological community is identified as 
the procedure recommended by the Guide for 
the evaluation and expression of measurement 
uncertainty (2008), better known as “the GUM”. 
A more general methodology to deal with 
these problems is distribution propagation, 
which can be implemented using Monte 
Carlo simulation techniques (Robert and 
Casella, 1999). The use of this methodology 
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has been growing, since the publication of the 
Supplement (2008) of the GUM. In Section 
2, we describe a statistical technique for the 
analysis of data from inter-laboratory studies, 
based on weighted averages. A gauge block 
calibration problem is also presented, which 
is solved using a Monte Carlo procedure. In 
Section 3, some comments are made on the 
application of statistics in metrology. 

COMPONENTS OF THE 
TRACEABILITY CHAIN
In the following subsections, we present 

a couple of examples that we use to illustrate 
the application of statistical procedures, in the 
analysis of data arising from inter-laboratory 
studies that are carried out to determine 
reference values, of three volume transfer 
standards. In the second example, we develop 
a longitudinal gauge block calibration process.

In the first example, we used a data set 
from an inter-laboratory comparison, known 
as a Key Comparison, or KC. Here the data 
are measurements (and their uncertainties) 
of transfer patterns, reported by the national 
laboratories participating in the study. In this 
example, three volume standards (20L) were 
used, as in the original data the observed 
scatter was very small, the values   of the first 
artifact (TS 710-04) were replaced by a set of 
values   with a larger scatter, with the objective 
of being able to show results, where there is a 
significant inter-laboratory variation.

  
REFERENCE VALUES OF A KEY 
COMPARISON 
Key Comparisons (KCs) between 

laboratories are the technical basis for mutual 
recognition agreements between national 
metrology centres. The purpose of the inter-
comparisons between the national metrology 
institutes is to test whether the measurements 
made by the participating countries 
are consistent, taking into account the 

uncertainties assigned to the measurements. If 
an inconsistency is detected, the participating 
countries must take the necessary corrective 
actions to have consistency. The purpose of a 
KC is to establish the key comparison reference 
value (KCRV), the degrees of equivalence and 
their associated uncertainties, based on the 
data provided by the participants. 

The results of the laboratories are considered 
realizations of the random variables: x1, x2,..., 
xn, where,

and, Y is the measurand and ϵ1, ϵ2,..., ϵn, 
mutually independent random variables 
with zero mean and variances σ1

2, σ2
2,..., σn

2. 
We consider the measurand to be a physical 
quantity of stable value during the comparison. 
We further assume that the random variables 
have a normal distribution, that is, xi~N(Y, 
σi

2).
The least squares estimate of the parameter: 

Y is , where wi=1/ σi
2. Besides,  

E(xR)=Y and V(xR)= . 
In practice the variances: σi

2 are unknown, 
so metrologists substitute these variances for 
their estimates: si

2. As a result of the statistical 
analysis of the data we have:

xR = reference value,
di=xi-xR degree of equivalence of the result: 

xi, 
dij = di-dj = xi-xj =degree of equivalence of 

the results xi and xj. 
u(xR), u(di)=, u(dij) and  are the standard 

uncertainties of xR, di and dij, respectively. 
It can be seen that considering the 

distribution of the xi's, degrees of equivalence: 
di and dij, satisfy, E(di)=E(dij)=0, V(di)=u2(xi)-
u2(xR) y V(dij)=u2(xi)-u2(xj).

In the considerations we have made about 
the relationship between the results: xi of 
the laboratories and of the value: Y of the 
measurand, we have assumed that the variation 
of the results is a consequence only of the inter-
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laboratory variation, expressed in the value of 
u(xi). Sometimes this does not happen and we 
find that the variation between the results is 
greater than the dispersion explained by the 
inter-laboratory uncertainties. In this case we 
must assume that there is an external variation 
component, inter-laboratory, that can explain 
the excess in the variation of the results. To 
model this variation of the results and its 
relationship with the measurand, we consider 
a random effects model, where we include a 
variation component due to the laboratories, 

where bi=Y+Xi is the laboratory effect in: xi 
y ϵ1=(xi-Xi) is the intra-laboratory error, and 
Xi is the expected result of the i-th laboratory, 
that is, E(xi)= Xi. 

The biases: b1, b2,...,bn due to laboratories, 
identically distributed random variables 
(vaiid), with normal distribution, with zero 
mean and variance are considered: σb

2, 
this is, b1~N(0, σb

2). An assumption that 
metrologists usually make here is that the 
estimated variances: s1

2+u2(xi),…, sn
2+u2(xn), 

are taken as the true variances of the sampling 
distributions of the results: x1, x2,..., xn. Under 
this assumption, the best estimate of the 
value of the measurand Y is the weighted 

mean: , with a variance given 

by , being in this case the weights 

given by: wi=1/[sb
2+u2(xi)]. The expressions 

for the estimates in the case of the simple 
model given by equation (1), and the random 
effects model (2), are similar, only that the 
variance of the results of the laboratories, in 
the second model, is greater, since an inflation 
term is added, given by the inter-laboratory 
variance: sb

2. 
To illustrate the procedure for estimating 

the reference value and the degrees of 
equivalence of the different participating 
laboratories in a key comparison that is 

carried out to establish the reference value of 
a measurement pattern, we use information 
from a report of a inter-comparison of 
national laboratories from 8 countries: 
CENAM (Mexico), NIST (United States), 
MC (Canada), SP (Sweden), PTB (Germany), 
IMGC (Italy), NMIA (Australia) and finally 
INMETRO (Brazil). Table 1 shows the values   
reported by the different laboratories. These 
values   resulted from measurement processes 
carried out by each laboratory following their 
own measurement protocols. Participating 
laboratories determined the volume of water 
that each of three Transfer Standards (labeled 
TS 710-04, TS 710-05, and TS 710-06) of 20 l 
can deliver after a 60-second drip period, at 
a reference temperature of 20°C. The transfer 
patterns were three reservoirs with a nominal 
volume of 20 l. 

There are different methods of estimating 
sb

2, inter-laboratory variance, which have 
been proposed by Cochran (1954), Paule 
and Mandel(1982) and DerSimonian and 
Laird(1986). Here we use the iterative method 
of Paule and Mandel, which is included in the 
“metRology” computing package, developed 
within the R platform, Team, R. C. (2015). 
According to the data that we observe in 
Table 1, while the values reported for artifacts 
TS 710-05 and TS 710-06 show an extremely 
small variation, for artifact TS710-04, the 
values reported by the laboratories show a 
greater variation. This difference in dispersion 
is reflected in the estimation of the inter-
laboratory variance, since the iterative method 
of Paule and Mandel(1982) gives a value sb

2 

=4.94 for the first artifact (TS710-04), a value: 
sb

2 =0.083 for the second and a null value for 
the third. 

In Table 1, at the bottom, the reference 
values (and their uncertainties) that result 
when taking the weighted average for the 
three transfer patterns are shown. In the last 
artifact, the uncertainty associated with the 



5
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3172202213092

Table 1. Results reported for 20 l. transfer standards. (artifacts 710-04, 710-05 and 710-06). In addition, the 
estimates of the reference values are presented at the end.

Table 2. Degrees of equivalence for artifacts (710-04, 710-05 y 710-06).

Table 3. Proposed distributions for the input variables of the proposed measurement model in the 
longitudinal pattern block calibration problem.

Table 4. Results of the estimation of the output variable, for the measurement model considered in the 
calibration example, taking into account the uncertainty propagation and distribution approaches.  
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measurand (0.07) is the result only of the 
intra-laboratory uncertainties, for the second 
artifact the standard uncertainty includes 
a small inter-laboratory variance (0.083) 
and instead, for the first artifact, it is has a 
greater uncertainty (0.63), thanks to the inter-
laboratory variance, which has a considerable 
value, sb

2 =4.94. 
Table 2 presents the estimates of the degrees 

of equivalence (and their uncertainties), here 
we also find that the degrees of equivalence 
for the values of the first artifact have a greater 
dispersion (than the other two artifacts) with 
respect to the value of reference (the estimated 
measurand), as a product of having a higher 
inter-laboratory variance. 

CALIBRATION PROCESSES 
A calibration process establishes the 

relationship between the values of the 
quantities indicated by an instrument or 
measurement system and the values given 
by the measurement standards. Typically a 
calibration model establishes a relationship 
between an artifact or artifacts being 
calibrated, with measurement standards from 
a higher level in the traceability chain. 

In the measurement model: Y=ƒ 
(X1,X2,...,Xn), we have in the vector of input 
quantities (X1,X2,...,Xn), both reference 
standards used and environmental variables. 
To illustrate a measurement process, we present 
here the longitudinal gauge block calibration 
process. We consider the determination of 
the length of a calibrated block, of a nominal 
length of 50 mm, by comparison with a known 
standard of the same nominal length. This is 
an example from GUM (2002) Supplement 1 
and is also included in GUM (2002).

The difference in their lengths is, 
d=l(1+αθ)-ls(1+αsθs), 

where,
l= length at 20°C, of the standard block to 

be calibrated (measurand),

ls= gauge block length at 20°C, given in its 
calibration certificate,

α= coefficient of thermal expansion of the 
block to be calibrated,

αs= coefficient of thermal expansion of the 
gauge block,

θ= temperature deviation of the block to 
be calibrated, with respect to 20°C,

θs = temperature deviation of the standard 
block, with respect to 20°C.

A more suitable expression of the model is,

A suitable expression for l is, l=ls+d-ls(αsθs-
αθ).

Considering,
δθ=θ-θs= temperature difference between 

blocks,
δα=α-αs= difference of the coefficients of 

thermal expansion.
Considering also,
d=D=d1-d2, where,
D= average of five measurements,  
d1= random effect associated with the 

comparator,
d2= systematic effect associated with the 

comparator,
θ=θ0+Δ, where,
θ0 = average deviation of 20°C, of the block 

to be calibrated,
Δ= Cyclic temperature variation.
Considering the previous expressions of d 

and θ, we have the following expression for l,

Finally we take as measurand the deviation 
of l from its nominal length (lnom=50mm),

So, finally, we have the measurement 
model,

Table 3 shows the distributions that 
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are assumed for the input variables of the 
measurement model presented here. Both 
for the lengths: ls y D that result from a 
previous calibration, as from a measurement, 
respectively; As for the random and 
systematic effects of the comparator used for 
the measurements, Student’s t-distributions 
are associated. The coefficient of thermal 
expansion of the gauge block (αs), it is assumed 
that it follows a Uniform distribution, since it 
is only known that the value of the coefficient 
is in a given interval (a,b). In the case of 
temperature variation, around 20°C, (Δ) it 
is assumed to be cyclical (sinusoidal), thanks 
to the temperature conditioning system. For 
the differences between the temperature of 
the blocks (δθ), and between the coefficients 
of thermal expansion (δα), since there is 
inexact information about the limits of the 
intervals that contain them, then, according 
to the principle of maximum entropy, it 
is appropriate to assume a Curvilinear 
Trapezoidal distribution. 

Traditionally, to obtain the distribution of 
the output variable (δl) of the measurement 
model, the GUM approach is used, based 

on the method of moments, and which 
also assumes a normal distribution for this 
variable. This approach works well when the 
measurement model is approximately linear, 
which is sometimes not the case. Thanks to 
the information that is available, or assumed, 
(the distributions), the Monte Carlo approach 
can be used to obtain the distribution of 
the output variable by simulation. Figure 1 
shows the (normal) distribution that results 
according to the GUM, and a histogram that 
shows the distribution of the simulated values 
of the output variable, according to the Monte 
Carlo method.

The solution reported by the GUM, 
considering the propagation of uncertainty, 
and the solution based on the adaptive Monte 
Carlo method, have a very small difference, as 
can be seen in Table 4, and in Figure 1, which 
shows the density function reported by the 
GUM and the histogram of the values of the 
output variable (δl), corresponding to the final 
measurement model, taking the distributions 
of the input variables, from Table 3. The 
number of trials required to have a tolerance: 
δ=(1/2)10º is M=130000.   
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Figure 1. Distribution of the output variable, of the measurement model of the calibration example, 

according to the uncertainty propagation and distribution approaches.
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CONCLUSIONS 
In this work we have commented on two 

commonly used techniques in metrology, 
inter-laboratory studies, which are developed 
to establish reference values, which are 
basic in order to establish the equivalence 
relationship between different measurements 
and calibration processes, which are essential 
in any measurement system. measurement 
assurance. In apparently simple inter-
laboratory comparison studies, there 

are a great variety of statistical problems 
because the characteristics of the different 
participating laboratories are very diverse. We 
have also presented a calibration data analysis 
process, following a Monte Carlo procedure, 
which has a greater range of application than 
the usual procedure, based on the method of 
moments. Metrology is an interesting area of 
opportunity, which requires the development 
of statistical models and the application of 
efficient solution techniques. 
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