
1
Scientific Journal of Applied Social and Clinical Science ISSN 2764-2216 DOI 10.22533/at.ed.2162142222074

v. 2, n. 14, 2022

All content in this magazine is
licensed under a Creative Com-
mons Attribution License. Attri-
bution-Non-Commercial-Non-
Derivatives 4.0 International (CC
BY-NC-ND 4.0).

Scientific
Journal of
Applied
Social and
Clinical
Science

THE CHALLENGES
OF THE SOFTWARE
ARCHITECT IN AGILE
METHODOLOGY
PROJECTS

Ricardo do Carmo Martins
https://orcid.org/0000-0001-9206-1078

2
Scientific Journal of Applied Social and Clinical Science ISSN 2764-2216 DOI 10.22533/at.ed.2162142222074

Abstract: Living with change is a reality in the
business environment. Changes happen for
a number of reasons: rules and laws change,
people change their minds, and technology
evolves. A software project must certainly
have an initial goal to be achieved, but it
must be flexible enough to accommodate
changes when they come to light, so that it
does not become irrelevant. In this context,
the question arises around the challenges of
a software architect in an agile methodology
project, which, identified through systematic
and critical bibliographic research, requires
from this professional an accurate ability to
adapt to changes, especially to manage them
in people. that make up the project team,
mediating conflicts and proposing solutions
that guide the entire project development
chain.
Keywords: Software architecture; Agile
methodology; Adaptation; Challenges.

INTRODUCTION
Most agile methodology projects have

flexible scope as their main characteristic, a
fact that implies a series of changes in direction
during the project.

In addition, the agile methodology opens
the possibility for projects to be partially
delivered, so it is not always possible to stick
to the architecture proposed at the beginning
of each project.

In this context, the question arises: What are
the challenges of a software architect in agile
methodology projects? Where the professional
ceases to act only at the moment of designing
the software, to exercise a fundamental
responsibility at the time of its development,
becoming responsible for making decisions in
relation to the maintenance of the structure
and organization of the software.

In traditional projects, where all
requirements are known in advance, it is
possible to create a complete architecture to

meet all needs. In the agile context, for each
new project need, it is necessary to review
and improve the software architecture in
order to adapt to the new assumptions and
requirements that arise, causing a huge
paradigm shift with regard to the original
concept. of software architecture.

In the agile context, the software architect
is challenged to create simpler, more
adaptable and evolutionary architectures in
a collaborative way with the project team,
instead of a complete architecture that already
addresses any and all needs.

This article aims to identify the behavioral
and technical challenges faced by the software
architect to work in agile methodologies
projects.

METHODOLOGY
This work consists of a bibliographic

research.
Research of this type is defined as a

systematic and critical review of the most
important publications on a specific subject,
allowing the dissemination of current
knowledge on the proposed topic.

Therefore, a review of recent literature will
be carried out. The research will be carried out
in texts, documents and books specific to the
information technology sector, in addition to
other materials related to the proposed theme.

The literature selection criteria will be full
texts that provide data on the subject to meet
the proposed objectives.

LITERATURE REVIEW
In this section, the main concepts are

listed, with the objective of consolidating
and familiarizing the reader with the
understanding of the research carried out.

3
Scientific Journal of Applied Social and Clinical Science ISSN 2764-2216 DOI 10.22533/at.ed.2162142222074

THE ROLE OF ARCHITECTURE
IN A SOFTWARE DEVELOPMENT
PROCESS
In the context of software development,

factors such as cost and efficiency influence
the choice of the best solution to be adopted.
This is observed, above all, when analyzing
the requirements for the construction of a
software: there are several solutions that can
be defined to meet these requirements, but a
more in-depth analysis is necessary to define
the development context of the software.
application.

Software architecture emerges as one
of the approaches that can be used in the
representation of these solutions. Thus, in
order to obtain the most adequate architecture
to meet the software requirements, an
evaluation of this structure must be carried
out (SPÍNOLA; BARCELOS, 2008).

These requirements can be broadly
classified as functional and non-functional
requirements.

Functional requirements are responsible for
describing the functionalities that the software
must present (SPÍNOLA; BARCELOS, 2008).
For Koelsch (2016), a functional requirement
describes the functions the system (for
example, hardware and software) must
perform.

Functional requirements are categorized
as business rules, administrative roles,
authentication, authorization levels, auditing,
tracking, compliance, legal or regulatory
(KOELSCH, 2016), among others.

On the other hand, non-functional ones
describe characteristics that the software must
present, which can often be seen as restrictions
or specialties of the final product (SPÍNOLA;
BARCELOS, 2008). For Koelsh (2016), a non-
functional requirement is a requirement that
specifies criteria that can be used to judge the
operation of a system, rather than specific
behaviors, they are contrasted with functional

requirements that define specific behavior or
functions.

Non-functional requirements are
categorized as architectural, performance,
security, quality, fault tolerance, efficiency,
effectiveness, usability, scalability,
recoverability, reliability, maintainability,
interoperability, extensibility, availability
(KOELSCH, 2016), among others.

Functional requirements are detailed
during system design, while non-functional
requirements are detailed in the system
architecture.

Among the different types of requirements,
both functional and non-functional, quality
requirements are the ones that most influence
the construction of architecture.

This is because, unlike functional
requirements where in most cases a
modification causes changes in a specific
set of architectural elements, changes in a
quality requirement can imply a complete
restructuring of the architecture (BASS et al.,
2003).

All these factors comprise the project at the
architectural level and are directly related to
the organization of the system and, therefore,
affect the quality attributes (also called non-
functional requirements) (FILHO, 2005).

If we make a comparison between software
architecture (characterized, for example, by
the layered style) and ‘classical’ architecture
(relating to the construction of buildings), we
can observe that the architectural design is
decisive for the success of the system.

According to some authors, the software
architecture still consists of a high-level model
that allows an easier understanding and
analysis of the software to be developed.

Shaw (1997) defines software architecture
as a set of computational components and the
relationships between these components.

Garlan (2000) states that it is a structure
of components of a program/system, the

4
Scientific Journal of Applied Social and Clinical Science ISSN 2764-2216 DOI 10.22533/at.ed.2162142222074

relationships between these components,
the principles and guidelines that govern the
projects and the evolution of software.

Clements et al. (2004) points to architecture
as a complex entity that cannot be described
in a one-dimensional way.

For Spínola and Barcelos (2008), an
effective way to deal with this complexity is
to describe it from different perspectives, also
known as architectural views.

As shown by Spínola and Barcelos (2008),
the use of architecture to represent software
solutions was mainly encouraged by two
trends (GARLAN AND PERRY, 1995;
KAZMAN, 2001):

I. the recognition by designers that the use
of abstractions facilitates the visualization and
understanding of certain properties of the
software; and

II. the increasing exploration of
frameworks in order to reduce the effort of
building products through the integration of
previously developed parts.

Another particularity of the architecture
is the possibility of using it as a tool to
communicate the designed solution to the
various stakeholders that participate in the
software development process (GARLAN,
2000).

However, for this communication to be
possible, the architecture must be represented
through a document, known as an architectural
document (SPÍNOLA; BARCELOS, 2008).

To obtain the architecture of a software,
the requirements are the main information
used. During the architectural specification
process (demonstrated in Figure 1), sources of
knowledge other than requirements can also
be used to define architectural elements and
how they must be organized.

The architect’s experience, reasoning about
requirements, in addition to architectural
styles and tactics are sources that deserve to be
highlighted (SPÍNOLA; BARCELOS, 2008).

There is, however, a lack of consensus in
the community regarding both basic concepts
and definitions and how to represent a
software architecture (BUSCHMANN et al.,
1996; CLEMENTS et al., 2004).

Some authors claim that software
architecture represents the structure, or set
of structures, which comprises the software
elements, their externally visible properties
and their relationships (BASS et al., 2003).

To create this structure, several authors
agree that three types of basic elements can be
used (DIAS; VIEIRA, 2000):

a) Software elements, which can also
be called modules or components, are the
abstractions responsible for representing
the entities that implement specified
functionalities;

b) Connectors, which can be called
relationships or interfaces, are the abstractions
responsible for representing the entities that
facilitate communication between software
elements;

c) Organization or configuration that
consists of the way in which the software
elements and connectors are organized.

For that, the structure and the entities that
compose the architecture of a software must
be represented in such a way that it is possible
to use the designed architecture for its proper
purposes. This representation is called an
architectural document. Such a document is
composed of a set of models and information
that mainly describe the structure of the
software specified to meet the requirements.

However, it is known that even though
there are standards that indicate the type
of information that must be described in an
architectural document, it does not have an
exact definition of the level of abstraction
that must be used in the description of this
information.

However, throughout the software
development, the architecture undergoes

5
Scientific Journal of Applied Social and Clinical Science ISSN 2764-2216 DOI 10.22533/at.ed.2162142222074

Figure 1 – Elements used in the construction of a software architecture (SPÍNOLA E BARCELOS, 2008).

Figure 2 – Example of a list of stakeholders with your interests (CUNHA, 2018).

Architectural
styles and tactics

 Architectural specification process

Architectural
documents

Requirements

Reasoning

Experience

6
Scientific Journal of Applied Social and Clinical Science ISSN 2764-2216 DOI 10.22533/at.ed.2162142222074

refinements that decrease the level of
abstraction and allow, for example, the
representation of the relationships between
the architectural elements and the source
code files responsible for implementing them
(CLEMENTS et al., 2004).

At this point, the architecture becomes part
of the solution scope and also incorporates
information related to design decisions, such
as elements specific to the technology that will
be used to implement the solution.

Some authors claim that the main
motivation to evaluate the architecture of
a software is related to its role within the
development process (SPÍNOLA; BARCELOS,
2008).

According to these authors, the architecture
of a software is based on different purposes for
each stakeholder (shown in Figure 2):

The customer is the person or company
that hires a development team to build a
system that they need. In the initial phase of
the project, this stakeholder needs an estimate
of certain factors, usually economic, that can
be obtained after defining the main structure
of the software.

The customer, for example, is interested in
software cost, accounting and maintainability
estimates that can be obtained primarily
through an architecture analysis.

Therefore, it is extremely important for
the customer that the architecture meets the
software requirements in order to represent
their real expectations in relation to what was
specified.

For managers, the architecture allows
them to make certain design decisions by
enabling the summarization of the various
characteristics of the system. A manager can,
for example, use the architecture as a basis to
define the development teams according to
the architectural elements that are identified
in the architecture and that must be built.

The developer, on the other hand, looks for

a specification from the software architecture
that describes the solution in sufficient detail
and that satisfies the customer’s requirements,
but that is not so restrictive as to limit the
choice of approaches for its implementation.
Developers use the architecture as a reference
for composing and developing system
elements, and for identifying and reusing
architectural elements already built.

For software testers, the architecture
provides, in a black box view, information
related to the correct behavior of the
architectural elements that integrate and
compose the solution. A good architecture
favors both the tests and the user of the system,
but mainly the automated tests.

To the team of maintainers, the architectural
description of the software provides a core
structure of the application that ideally must
not be violated. Any change must preserve it,
seeking, if possible, a modification purely of
the architectural elements and not the way
they are organized.

Garlan (2000) states that the main role
of software architecture is to serve as an
instrument to communicate the proposed
solution.

For Filho (2005), software architecture
serves as a framework through which to
understand the components of a system and
their interrelationships.

The software architect has a very important
role in the strategy adopted by the organization.

This professional needs to have in-
depth knowledge of the domain, existing
technologies and software development
processes. A summary of a desired set of skills
for a software architect and the tasks assigned
to him are presented in Table 1 (FILHO, 2005).

However, the current scenario of the
software development market has demanded
from this professional a high degree of
resilience, since there is a need for a continuous
increase in competitiveness, following the

7
Scientific Journal of Applied Social and Clinical Science ISSN 2764-2216 DOI 10.22533/at.ed.2162142222074

dynamism and speed with which information
and knowledge circulate (RIBEIRO AND
RIBEIRO, 2015).

AGILE METHODS
According to Gomes et al. (2014), for several

years, Software Engineering was inspired by
manufacturing processes to consolidate its
working methods.

Born in the second half of the 20th century,
the software development industry sought in
emerging sectors of the industry at the time
most of the theories and production methods.
In particular, the automotive field, in a broad
industrial rise, played an important role in the
constitution of the new IT industry (GOMES
et al., 2014).

Thanks to Henry Ford’s serial production
model, highly inspired by Frederick Taylor, all
traditional thinking in the science of software
development unfolded with an intense focus
on the standardization of components and
processes and the mechanization of movement
(GOMES et al., 2014).

Over time, the complexity of software
has increased more and more. Joining the
problems inherent to software development
and the current importance of computerized
systems, some theorists began to disagree with
the idea of treating software development as a
serial production factory (MARQUES, 2012).

In the mid-1990s, alternative software
development processes began to emerge, in
response to the traditional ones, considered
excessively regulated, slow, bureaucratic and
inappropriate for the nature of the activity.
These new processes were called “light”,
as opposed to the previous ones, “heavy”
(GOMES et al., 2014).

In 2001, these processes became known
as “agile”, through the creation of the so-
called Agile Manifesto, which established the
principles of the methodology that was born
there.

This manifesto was created by a group of 17
experts who met in Utah, in the United States,
to discuss ways to develop software in a lighter
way. They coined the terms “Agile Software
Development” and “Agile Methods” and
created the Agile Manifesto – widely spread as
the canonical definition of agile development,
composed of the values and principles that we
will see next (GOMES et al., 2014).

It must be noted that most agile concepts
and principles emerged with a focus on
software development projects, but are
currently used in various types of projects that
have great uncertainties, such as advertising
campaigns, new products, budget planning
and many others. areas (RIBEIRO; RIBEIRO,
2015).

For Libardi and Barbosa (2010), a
characteristic of agile methodologies is that
they are adaptive rather than predictive. This
way, they adapt and increment to new factors
during the development of the project, instead
of trying to analyze in advance everything
that may or may not happen during the
course of development. This pre- analysis is
always difficult and expensive, in addition
to becoming a problem when changes to the
plans need to be made.

The Agile Manifesto makes an important
message clear, that the process and tools are
likely to be needed on the project; however,
you must try to focus the team’s attention on
the individuals and interactions involved in
the project.

Libardi and Barbosa (2010) emphasize
that software is not built by a single person,
they are built by a team, so they need to work
together (including programmers, testers,
designers and also the customer). Processes
and tools are important, but not as important
as working together.

Within this principle, one must focus
primarily on the development of the individuals
involved in the project, emphasizing

8
Scientific Journal of Applied Social and Clinical Science ISSN 2764-2216 DOI 10.22533/at.ed.2162142222074

Desired Skills Assigned tasks

Domain knowledge and relevant technologies Modeling

Knowledge of technical issues for systems development Commitment and feasibility analysis

Knowledge of requirements gathering techniques, and
systems modeling and development methods

Prototyping, simulation and experimentation

Knowledge of the company’s business strategies Analysis of technological trends

Knowledge of processes, strategies and products of
competing companies

‘Evangelizer’ of new architects

Table 1 - Skills and Tasks of a Software Architect (FILHO, 2005).

Figure 3 – SCRUM Framework (Scrum.org).

Traditional Methodology Agile Methodology

Architect has knowledge of all functional requirements Architect has little knowledge of functional requirements,
they are identified as the software evolves

Architect thinks about the solution as a whole, as all features
are known

Architect thinks about the solution only to meet the
functionalities already identified

Complete and complex architecture that already meets any
need

Creating simple architectures that are easily adaptable

Very well documented architecture at the beginning of the
project

Focus on simple models, created from according to need

Architect produces several visions and abstractions as a
means of communicating to others involved in the project

Architect produces simpler abstractions and views, sufficient
for the team to understand

Isolated architects, far from the team Architect is a member of the team, working collaboratively

The architectural definition is top-down, the development
team implements

Architectural definitions emerge from the project team in a
collaborative way

Architect produces predictive architectures Architect produces evolutionary architecture

Architecture validated through reviews Architecture validated with implementations concrete

Table 2 - Comparison of traditional methodology and agile methodologies

9
Scientific Journal of Applied Social and Clinical Science ISSN 2764-2216 DOI 10.22533/at.ed.2162142222074

productive and effective interactions, with the
objective of increasing the chances of project
success (RIBEIRO; RIBEIRO, 2015).

For Gomes et al. (2014), we came to believe
so blindly in processes and tools that we
stopped communicating. We forget that people
make software. Instead of conversations and
discussions, developers were given written
specifications. They are important, yes, but
they don’t communicate as well as a good
face-to-face discussion, or sketches, doodles,
and models. Obviously, tools are important.
It’s much harder to do things without them.
Processes, too. Still, we mustn’t stop valuing
people and we mustn’t stop communicating.
This is part of teamwork. Therefore, if these
issues start to fight for space, value the human
side more and you will have a good chance of
getting better results (GOMES et al., 2014).

Another positive point of agile
methodologies is the constant delivery of
operational parts of the software. This way,
the customer does not have to wait long to
see the software working and judge whether
it faithfully meets their needs (LIBARDI;
BARBOSA, 2010).

This, by the way, is another value contained
in the manifesto, which highlights that
software projects are normally initiated with
the objective of creating value for the company
through a high quality software product, often
in deliveries in intermediate parts (increments
of software).

Integration and continuous testing also
make it possible to improve software quality.
It is no longer necessary to have a module
integration phase, as they are continuously
integrated and any problems are constantly
resolved.

Ribeiro and Ribeiro (2015) point out,
however, that software without documentation
is certainly problematic and makes support
and maintenance difficult. But complete
documentation without software adds

absolutely nothing to any organization.
In Libardi and Barbosa’s (2010) analysis

of the Agile Manifesto, the authors state that
documentation must exist to help people
understand how the system was built, but it
is much easier to understand how it works
by seeing the system work than by seeing it
work. diagrams that describe the operation or
abstract the use.

The manifesto also reinforces the need to
be flexible and efficient, rather than rigid and
uncooperative. This applies to the numerous
cases where the final product is delivered
exactly as specified, but the customer signals
the need for changes due to a change in idea,
priority or market.

Only the customer can say what he expects
from the software and, as these are usually
people and organizations from different
industries, it is normal for them to change
their minds as they see the software working.

Having a contract is important to define
responsibilities and rights, but it must never
replace communication between the parties
involved in the project. Successfully developed
works have constant communication with
the client to understand their needs and help
them discover the best way to express them.

For Gomes et al. (2014), this is a weak point
of the Manifesto and of the Agile Methods,
constantly criticized due to its fragility and
personality. For the authors, it’s something
that definitely needs to evolve. The parties
need some security against acts of bad faith.

In order to minimize this risk, contracts
usually have types of “control points”, in
which the relationship is reassessed to decide
whether to continue or discontinue the
contract without encumbrance. Naturally, if
both parties are satisfied with the relationship,
the commitment remains. Otherwise, the
realignment of interests is sought and, if there
is no agreement, the continuity of the project
is suspended (GOMES et al., 2014).

10
Scientific Journal of Applied Social and Clinical Science ISSN 2764-2216 DOI 10.22533/at.ed.2162142222074

The Manifesto admits that it is very difficult
to address all the complex development
issues in contracts. According to Gomes et al.
(2014), trying to create protective walls will
not solve anything if there is no collaboration
between the team and the client. The solution
would be, instead of trying to solve problems
by including new clauses, writing overly
complex contracts, working at another level
with the client, creating a climate of trust and
collaboration.

Libardi and Barbosa (2010) emphasize
that the Agile Manifesto does not reject
processes and tools, documentation, contract
negotiation or planning, but simply shows
that they are of secondary importance when
compared to individuals and interactions,
with the software working, with customer
collaboration and rapid responses to changes
and changes.

In projects with a large number of
uncertainties, it is almost certain that the
initial plans will change. Instead of investing
efforts in trying to bring the project back to
the original plans, effort and energy must be
spent to respond to the inevitable changes in
the project (RIBEIRO; RIBEIRO, 2015).

RESEARCH PRESENTATION
For the purpose of this research, a

systematic and critical review of important
and relevant publications on the subject was
carried out, allowing the dissemination of
current knowledge on the proposed topic.

The authors point out that, in a classic
methodology, it can happen that a software
is built entirely and then it is discovered
that it no longer serves the purpose it was
developed because the rules have changed
and the adaptations become too complex to
be worth the effort. worth developing them.
Agile methodologies work with constant
feedback, which allows you to quickly adapt
to any changes in requirements.

These changes are often critical in
traditional methodologies, which do not
have the means to quickly adapt to changes
(LIBARDI; BARBOSA, 2010).

In agile processes, however, delivery
of working software is preferred over
comprehensive, exaggerated and wasteful
documentation. The expected result is the
software working, with quality. Documentation
and maintainability are part of this quality.
However, there is a need to think more about
“what” to document and “when” to document.
One must reflect on what is really useful and
what will quickly become outdated or not
even be read someday. This generates waste
and increases the cost of a project (GOMES
et al., 2014).

The Agile Manifesto, in its second clause,
proposes that working code is more important
than extensive documentation. As already
mentioned, documents and specifications
are valid, but prioritizing them over well-
made and functional software is a mistake.
The 7th principle of the Manifesto ratifies this
discourse, clarifying that the good progress
of a software development project must be
measured, primarily, through the amount
of software delivered and working, which is
what, in fact, matters to the end customer, and
not by the volume of documents generated
(GOMES et al., 2014).

The software architect, in this context,
starts to live with the unlikely attribution of
establishing communication between the
work team and the contracting client, acting
as a facilitator in this process.

The Agile Manifesto states that, among
all types of information exchange between
software development teams, the most
effective is face-to-face communication. The
less indirect communication, the lower the
risks of misinterpretation. The more frequent
the face-to-face conversations are, the less
conflicts will arise, the less energy will be

11
Scientific Journal of Applied Social and Clinical Science ISSN 2764-2216 DOI 10.22533/at.ed.2162142222074

spent on their reversal and the more effective
and sustainable the work will be (GOMES et
al., 2014).

The software architect is still faced with the
difficult task of responding to changes rather
than following a plan, as the learning process
exists for both the development team and the
customer. Changes, therefore, are natural and
inevitable.

The changes must be seen as great
opportunities for the developed system to
be more responsive to the customer’s needs,
in addition to contributing greatly to the
desired results. Therefore, the architect must
do everything possible to receive them and
welcome them with open arms, in addition to
organizing the ideas that will be passed on to
the development team.

One of the ways to avoid this is to
adopt a constant process of collaboration
between customers, the product owner and
development teams; a relationship primarily
driven by the software architect. It is his
responsibility to promote a joint action of
agile teams and direct representatives of
the client, enabling a continuous flow of
presentation, discussion and feedback, which
is fundamental to guarantee the success of the
project.

So, to really welcome the changes, we need
to replan all the time. Agile planning processes
usually include PDCA cycles at different levels
(daily, weekly, monthly, quarterly, etc.), in
which there is an opportunity for reflection
and readjustment of the directions taken by
the project (GOMES et al., 2014).

Realizing the inefficiency of the practices
adopted against changes in the course of
development, the agile philosophy chose to
disagree with the secular premise that late
changes are harmful and adopted a favorable
stance towards their occurrence.

In this context, therefore, it is up to architects
to naturally accept the fact that changes in the

original scope of any project are expected and
very welcome, even if this directly confronts
everything that was preached in the past. As
a result, changes of any nature are now seen
as normal.

The great advantage is that agile methods
bring techniques and tools to respond as
quickly as possible to all kinds of changes,
which is certainly a reflection of learning
from some circumstance hitherto unnoticed
by stakeholders.

The work rhythm is now dictated by pre-
defined and predetermined time periods for
software deliveries, making the work team
aware of its speed, that is, it starts to better
predict how much it is capable of produce in
each cycle.

This evolution of software engineering
has brought several processes, techniques
and tools that, despite organizing and
documenting the solution development life
cycle, have become more important than the
software to be delivered. On the other hand, it
is necessary to deal with the ingenious brains
of analysts and programmers, eager to apply
the “state of the art” of the latest technologies,
languages and tools, putting product quality
at risk and leaving customer needs in the
background. (GOMES et al., 2014).

This, therefore, is one of the duties of the
software architect: to guarantee the delivery
of the software working with quality, with
fast and continuous iterations, always adding
business value to the customer.

Agility is not about obeying pre-established
production protocols, unlike in other
development cultures, but about new patterns
of behavior and attitude. Therefore, a team
cannot call itself “agile” if it does not behave
like that. Books and articles are great sources
of knowledge, but no team becomes agile by
simply reading them. After all, agility is not
granted, but achieved with each small daily
behavior transformation (GOMES et al., 2014).

12
Scientific Journal of Applied Social and Clinical Science ISSN 2764-2216 DOI 10.22533/at.ed.2162142222074

DISCUSSION OF RESULTS
After conducting the research, it was

possible to identify and list a comparison
between the profile, and attributions, of the
software architect in projects of the traditional
methodology, and their correlation in agile
methodologies, presented in Table 2.

Agile methodology projects go through
several iterations of continuous improvement,
enhancing positive aspects and acting on
identified improvement points, guided and
scored by the architect. The zipper metaphor
(Figure 4) demonstrates the evolution and
refinement of requirements, the extraction of
relevant architectural requirements in each
iteration, and the dependency between them.

It was found that in the agile context, it
is up to the software architect to produce
evolutionary architectures, with support
for changes, extensible and flexible, such as
architectures based on micro-services (Figure
5).

Use of evolutionary architectures,
characterized by modularity and association
with the business domain (Domain-
Driven Design - DDD), aiming at the low
coupling between the various components
and interfaces, allows experimentation and
minimizes the risks associated with the
changes inherent to the construction and
evolution of the application.

FINAL CONSIDERATIONS
It was identified that the software architect

needs to recognize software development as
an empirical process and subject to change
throughout its life cycle, to effectively serve
the end customer.

The architectural evolution, until then
exclusive to the software architect, becomes
shared and collaborative, enriched by the team,
bringing more quality to the final product, as
well as greater synergy, and understanding,
before the entire project team.

Proposing and building simpler, flexible,
modular and evolutionary architectures
are the great challenges for the traditional
software architect of software development, in
projects of agile methodologies.

To continue this subject, it is suggested the
evaluation of modeling techniques, and design,
to form and enrich agile methodologies,
considering not only one, but a complete set
of activities related to software architecture, as
well as techniques and approaches for building
software. evolutionary architectures.

13
Scientific Journal of Applied Social and Clinical Science ISSN 2764-2216 DOI 10.22533/at.ed.2162142222074

Figure 4 - Zipper metaphor for combining functional and architectural interactions. (NORD; OZKAYA;
KRUCHTEN, 2014)

Figure 5 – Comparison between monolithic architecture and micro-services architecture (FOLWER;
LEWIS, 2014)

A monolithic application has all its
functionality in a single process....

..and scale by replicating the
monolith on multiple servers...

The microservices architecture puts
each element of functionality into a
separate service...

.... and scale distributing services between
servers, replicating on demand...

14
Scientific Journal of Applied Social and Clinical Science ISSN 2764-2216 DOI 10.22533/at.ed.2162142222074

REFERENCES
BACHMANN, F.; BASS, L.; CHASTEK, G.; DONOHOE, P.; PERUZZI, F. The Architecture Based Design Method,
CMU/SEI, Relatório Técnico, CMU/SEI2000-TR- 001. 2000. Disponível em https://resources.sei.cmu.edu/asset_files/
TechnicalReport/2000_005_001_13697.pdf. Acesso em 29 maio 2018.

BAHSOON, R.; EMMERICH, W. Evaluating software architectures: development, stability, and evolution. In: Book of
Abstracts of the ACS/IEEE International Conference on Computer Systems and Applications, pp. 47, Tunis, Tunisia, July 2003.
Disponível em https://www.researchgate.net/publication/4032742_Evaluating_software_architectures_ development_stability_
and_evolution. Acesso em 27 junho 2018.

BASS, L.; CLEMENTS, P.; KAZMAN, R. Software Architecture in Practice. Second Edition, Addison Wesley. 2003.

BECK, K. Extreme Programming Explained: Embracing Change. 1. ed. AdissonWesley, 1999.

BOSSAVIT, L. The Unbearable Lightness of Programming: a tale of two cultures. Cutter IT Journal, Massachusetts, v.15, n.9,
2002.

BUSCHMANN, F.; MEUNIER, R.; ROHNERT, H.; SOMMERLAD, P.; STAL, M. Pattern- Oriented Software Architecture: A
System of Patterns, Jon Wiley and Sons. 1996.

CLEMENTS, P.; BACHMANN, F.; BASS, L.; GARLAN, D.; IVERS, J.; LITTLE, R.; NORD, R.; STAFFORD, J. Documenting
Software Architectures. Addison-Wesley, 2004.

COPLIEN, J. O. Lean Architecture: for Agile Software Development. Wiley, 2010.

DIAS, M.S.; VIEIRA, M.E.R. Software architecture analysis based on statechart semantics. In: International Workshop on
Software Specification and Design, pp. 133-137. Washington, 2000. Disponível em https://ieeexplore.ieee.org/document/891134/.
Acesso em 9 junho 2018.

FAGUNDES, P. B. Framework para Comparação e Análise de Métodos Ágeis. Dissertação de Mestrado. Universidade Federal
de Santa Catarina. Florianópolis, 2005. Disponível em https://projetos.inf.ufsc.br/arquivos_projetos/projeto_825/FR.COMP.
ANAL.M.AGEIS.do c. Acesso em 22 maio 2018.

FILHO, A.M.S. Arquitetura de Software: Desenvolvimento orientado para arquitetura. Engenharia de Software Magazine,
1. ed. 2005. Disponível em http://www.garcia.pro.br/EngenhariadeSW/artigos%20engsw/art%201%20-%20Revista%20
Engenharia%20de%20Software%20-%20edicao%201%20-%20Arquitetura%20de%20software.pdf. Acesso em 18 maio 2018.

FORD, N. Arquitetura Evolucionária: Considerações e técnicas para arquitetura ágil. DeveloperWorks, 2010. Disponível em
https://www.ibm.com/developerworks/br/java/library/j-eaed10/index.html. Acesso em 11 abril 2018.

FRIED, J.; HANSSON, H.; LINDERMAN, M. Getting real: the smarter, faster, easier way to build a successful web application.
2006.

GARLAN, D. Software architecture: a roadmap. In: Proceedings of The Conference on The Future of Software Engineering, pp.
91-101, 2000. Disponível em https://dl.acm.org/citation.cfm?id=336537. Acesso em 26 maio 2018.

GOMES, A.; WILLI, R.; REHEM, S. O Manifesto Ágil. In: Prikladnicki, R.; Willi, R.; Milani, F. Métodos Ágeis para
Desenvolvimento de Software. São Paulo: Bookman, 2014.

HIGHSMITH, J. Agile Software Development Ecosystems. Adisson-Wesley, 2002.

HUMMEL, A. D. Como fica a arquitetura de software em um projeto ágil? TI Especialistas, 2015. Disponível em http://www.
tiespecialistas.com.br. Acesso em 11 maio 2018.

KAZMAN, R. Handbook of Software Engineering and Knowledge Engineering. In: CHANG, S.K. (eds), World Scientific
Publishing, 2001.

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2000_005_001_13697.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2000_005_001_13697.pdf
https://www.researchgate.net/publication/4032742_Evaluating_software_architectures_development_stability_and_evolution
https://www.researchgate.net/publication/4032742_Evaluating_software_architectures_development_stability_and_evolution
https://www.researchgate.net/publication/4032742_Evaluating_software_architectures_development_stability_and_evolution
https://ieeexplore.ieee.org/document/891134/
https://projetos.inf.ufsc.br/arquivos_projetos/projeto_825/FR.COMP.ANAL.M.AGEIS.doc
https://projetos.inf.ufsc.br/arquivos_projetos/projeto_825/FR.COMP.ANAL.M.AGEIS.doc
https://projetos.inf.ufsc.br/arquivos_projetos/projeto_825/FR.COMP.ANAL.M.AGEIS.doc
http://www.garcia.pro.br/EngenhariadeSW/artigos%20engsw/art%201%20-%20Revista%20Engenharia%20de%20Software%20-%20edicao%201%20-%20Arquitetura%20de%20software.pdf
http://www.garcia.pro.br/EngenhariadeSW/artigos%20engsw/art%201%20-%20Revista%20Engenharia%20de%20Software%20-%20edicao%201%20-%20Arquitetura%20de%20software.pdf
http://www.garcia.pro.br/EngenhariadeSW/artigos%20engsw/art%201%20-%20Revista%20Engenharia%20de%20Software%20-%20edicao%201%20-%20Arquitetura%20de%20software.pdf
http://www.garcia.pro.br/EngenhariadeSW/artigos%20engsw/art%201%20-%20Revista%20Engenharia%20de%20Software%20-%20edicao%201%20-%20Arquitetura%20de%20software.pdf
https://www.ibm.com/developerworks/br/java/library/j-eaed10/index.html
https://dl.acm.org/citation.cfm?id=336537
http://www.tiespecialistas.com.br/
http://www.tiespecialistas.com.br/

15
Scientific Journal of Applied Social and Clinical Science ISSN 2764-2216 DOI 10.22533/at.ed.2162142222074

KAZMAN, R.; BASS, L.; ABOWD, G.; WEBB, M. SAAM: a method for analyzing the properties of software architectures. In:
Proceedings of the International conference on Software Engineering (ICSE), pp. 81-90, 1994. Disponível em https://ieeexplore.
ieee.org/document/296768/. Acesso em 11 junho 2018.

KOCH, R. O princípio 80/20: o segredo de se realizar mais com menos. Rio de Janeiro: Rocco, 2001.

KOSCIANSKI, A.; SOARES, M.S. Metodologias ágeis. In: Qualidade de Software: Aprenda as metodologias e técnicas mais
modernas para o desenvolvimento de software. 1. ed. São Paulo: Novatec, 2006.

KRUCHTEN, P. Architectural Blueprints - The “4+1” View Model of Software Architecture. In: IEEE Software, v. 12, pp.
42-50, 1995.

LAITENBERGER, O.; ATKINSON, C. Generalizing Perspective-based Inspection to handle Object-Oriented Development
Artifacts. In: Proceedings of the International conference on Software Engineering (ICSE), 1999. Disponível em: https://
ieeexplore.ieee.org/document/841039/. Acesso em 17 junho 2018.

CUNHA, T. Modelagem e Documentação Arquitetural. Instituto de Gestão e Tecnologia da Informação, 2018.

NORD, R. L.; OZKAYA, I.; KRUCHTEN, P. Agile in distress: Architecture to the rescue. International Conference on Agile
Software Development. Anais...2014

LEFFINGWELL, D.; MUIRHEAD, D. Tactical Management of Agile Development: Achieving Competitive Advantage.
Colorado, 2004. Disponível em: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.495.4432&rep=rep1&type=pd
f. Acesso em 22 junho 2018.

LIBARDI, P. L. O.; BARBOSA, V. Métodos Ágeis. Universidade Estadual de Campinas – UNICAMP, 2010. Disponível em:
http://www.fatecsp.br/dti/tcc/tcc00064.pdf. Acesso em 27 junho 2018.

MARQUES, A. N. Metodologias ágeis de desenvolvimento: Processos e Comparações. São Paulo, 2012.

PALMER, S. R.; FELSING, J. M. A Practical Guide to Feature-Driven Development. New Jersey: Prentice Hall PTR, 2002.

FOWLER, M; LEWIS, J. Microservices, a definition of this new architectural term, 2014. Disponível em https://martinfowler.
com/articles/microservices.html. Acesso em 06 outubro 2018.

POPPENDIECK, M.; POPPENDIECK, T. Lean Software Development: An Agile Toolkit. New Jersey: Addison Wesley, 2003.

PRESSMAN, R. Desenvolvimento Ágil. In: Engenharia de Software. 6. ed. São Paulo: McGraw Hill Interamericana, 2006.

RIBEIRO, R. D.; RIBEIRO, H. C. S. R. Gerenciamento de projetos com métodos ágeis. Rio de Janeiro, 2015.

SPÍNOLA, R. O.; BARCELOS, R. F. Fundamentos de Arquitetura de Software. Engenharia de Software Magazine. 6. ed., 2008.
Disponível em: http://www.garcia.pro.br/EngenhariadeSW/artigos%20engsw/art%204%20-%20Revista%20Engenharia%20
de%20Software%20-%20edicao%206%20-%20fundamentos%20de%20Arquitetura%20de%20Software.pdf. Acesso em 30 julho
2018.

XAVIER, J.R. Criação e Instanciação de Arquiteturas de Software Específicas de Domínio no Contexto de uma Infra-
estrutura de Reutilização. Dissertação de Mestrado, Programa de Engenharia de Sistemas e Computação. COPPE/UFRJ, 2001.
Disponível em http://reuse.cos.ufrj.br/prometeus/publicacoes/xavier-dissertacao- mestrado.pdf. Acesso em 27 julho 2018.

SCRUM.ORG, SCRUM Framework. Disponível em http://www.scrum.org. Acesso em 08 outubro 2018.

COSTA, M. Características de Arquiteturas Evolutivas. InfoQ, 2016. Disponível em: https://www.infoq.com/br/news/2016/04/
evolutionary-architectures. Acesso em 01 outubro 2018.

SHAW, M.; GARLAN, D. Characteristics of Higher-Level Languages for Software Architecture. Carnegie Mellon University.
1994. Disponível em: http://www.dtic.mil/dtic/tr/fulltext/u2/a292215.pdf. Acesso em 14 julho 2018.

MENDONÇA, D; STAA, A. Técnicas para Aplicação de Agilidade em Arquitetura de Software. Monografia em Ciências
da Computação. Pontifícia Universidade Católica do Rio de Janeiro, 2016. Disponível em ftp://ftp.inf.puc- rio.br/pub/docs/
techreports/16_03_mendonca.pdf. Acesso em 05 outubro 2018.

https://ieeexplore.ieee.org/document/296768/
https://ieeexplore.ieee.org/document/296768/
https://ieeexplore.ieee.org/document/841039/
https://ieeexplore.ieee.org/document/841039/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.495.4432&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.495.4432&rep=rep1&type=pdf
http://www.fatecsp.br/dti/tcc/tcc00064.pdf
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://www.garcia.pro.br/EngenhariadeSW/artigos%20engsw/art%204%20-%20Revista%20Engenharia%20de%20Software%20-%20edicao%206%20-%20fundamentos%20de%20Arquitetura%20de%20Software.pdf
http://www.garcia.pro.br/EngenhariadeSW/artigos%20engsw/art%204%20-%20Revista%20Engenharia%20de%20Software%20-%20edicao%206%20-%20fundamentos%20de%20Arquitetura%20de%20Software.pdf
http://www.garcia.pro.br/EngenhariadeSW/artigos%20engsw/art%204%20-%20Revista%20Engenharia%20de%20Software%20-%20edicao%206%20-%20fundamentos%20de%20Arquitetura%20de%20Software.pdf
http://www.garcia.pro.br/EngenhariadeSW/artigos%20engsw/art%204%20-%20Revista%20Engenharia%20de%20Software%20-%20edicao%206%20-%20fundamentos%20de%20Arquitetura%20de%20Software.pdf
http://reuse.cos.ufrj.br/prometeus/publicacoes/xavier-dissertacao-mestrado.pdf
http://reuse.cos.ufrj.br/prometeus/publicacoes/xavier-dissertacao-mestrado.pdf
http://www.scrum.org/
https://www.infoq.com/br/news/2016/04/evolutionary-architectures
https://www.infoq.com/br/news/2016/04/evolutionary-architectures
http://www.dtic.mil/dtic/tr/fulltext/u2/a292215.pdf
ftp://ftp.inf.puc-rio.br/pub/docs/techreports/16_03_mendonca.pdf
ftp://ftp.inf.puc-rio.br/pub/docs/techreports/16_03_mendonca.pdf
ftp://ftp.inf.puc-rio.br/pub/docs/techreports/16_03_mendonca.pdf

