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Abstract: The advancement of technology 
and the needs imposed by the market, such 
as high surface quality and reduction of 
manufacturing costs, have made machine 
tools the focus of numerous researches, aimed 
at improving their performance in different 
industrial processes. Some of these researches 
have as objective the instrumentation of the 
machine, aiming at the monitoring of some 
variables related to the machining process. 
To carry out such monitoring, systems with 
sensors are used that allow the measurement 
of physical quantities that are closely linked 
to the cutting parameters (feed, cutting speed 
and cutting depth). These parameters are 
of fundamental importance for the process 
and help in the good machinability of the 
materials, an error in the configuration 
of these parameters, before or during the 
process, can cause wear or even breakage 
of the tool. The main quantities used in 
monitoring machine tools are mechanical 
vibration (correlated with the rotation of the 
workpiece and the movement and wear of the 
tool), temperature (which varies mainly with 
the plastic deformation at the workpiece-tool 
interface and the friction at the workpiece-
tool and chip-tool interfaces) and sound 
vibration (related to stiffness and friction 
between materials). This article presents 
the development of a system that monitors 
acceleration, temperature, and sound emitted 
during an external turning process, using 
an embedded system (data acquisition and 
processing boards) with low cost and high 
computational power. To determine the 
process signature that relates temperature, 
vibration and audio to the machined material 
and to the cutting parameters (feed and depth 
of cut), an Artificial Neural Network (ANN) 
was used, which obtained an accuracy rate 
of approximately 80%, indicating that the 
monitoring system is capable of generating 
data that allows the determination of the 

process signature.
Keywords: Turning, Monitoring System, 
Instrumentation, Process Signature.

INTRODUCTION
Industry plays a leading role in a country’s 

economy, which implies that manufacturing 
is related to economic development [1]. This 
scenario can be noticed in both developed 
and developing countries[2].

Therefore, numerous researches have 
been developed in recent years to change 
the traditional concept of manufacturing to 
an automatic and intelligent profile, which 
gave rise to the so-called Industry 4.0. In the 
traditional concept of manufacturing, in the 
manufacturing process an operator inspects 
the tool, the part and the cutting parameters 
in order to perform a satisfactory machining. 
Along these lines, Industry 4.0 proposes the 
use of a specific monitoring system to carry 
out this inspection [3].

Along with this, from data collected by 
monitoring systems, the concept of process 
signatures began to emerge in the literature, 
which are behavior patterns of physical 
quantities that represent the interaction 
between the material and the process, from a 
chemical and physical point of view [4]. 

One of the main challenges of implementing 
a monitoring system in a manufacturing 
process is the instrumentation of the machine 
tool, so that the measured variables are 
correlated with the material and the process 
to allow a process signature to be collected. 
Thus, the present work aims to develop an 
embedded and modular monitoring system 
that allows parallel acquisition of sensor data 
during an external turning operation in order 
to obtain a process signature.

LITERATURE REVISION
As noted in [5], a monitoring system for 

the manufacturing process can be built as 
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shown in Fig.1. In a manufacturing process, 
sensors are allocated in the machine tool to 
measure physical quantities correlated with 
the process, finally, the measured signal is 
conditioned and digitized by an acquisition 
system. The advantage of using a monitoring 
system in machining processes is that they 
generate economy and practicality, since 
it allows the detection of tool wear, part 
roughness and other parameters related to the 
process for the production of a part [6].

QUANTITIES FOR MONITORING 
MACHINE TOOLS
The most used quantity for monitoring 

manufacturing processes is vibration, in 
machining processes, this variable arises due 
to the interaction in the machine-fixation-
part-tool system and directly influences the 
surface quality of the part, tool wear and 
machine robustness. There are two types 
of vibrations in the machining process [7]: 
forced generated by the workpiece and tool 
contact and self-excited generated by the 
material removal rate.

Several works have been carried out aiming 
to correlate the vibration with: the flank wear 
of the tool, for example, [8] which determines 
the instants in which the tool has a wear 
transition; cutting parameters such as [9] 
which shows that the maximum magnitude 
in frequency of the acceleration signal is a 
measure sensitive to changes in speed and 
depth of cut.

Temperature is another physical quantity 
that is much studied in manufacturing 
processes, when referring to turning, a lot 
of energy is spent to remove material by 
plastic deformation and most of this energy is 
transformed into heat. The dissipation of this 
heat occurs through the workpiece, the chip 
and the tool [10].

Among the applications for temperature 
monitoring, we can mention: determining 

the average roughness (Ra) as, for example, 
in [11] shows that the increase in temperature 
due to the shear parameters generates an 
increase in Ra; analyzing the tool wear, for 
example, in [12] it is observed that the cutting 
speed and the feed per tooth have a greater 
influence on the tool temperature, while the 
depth of cut has a lesser influence; optimizing 
cutting parameters, in order to minimize the 
average cutting temperature, in [13] notices 
that the depth of cut affects the average cutting 
temperature more, while the feed and cutting 
speed influence less.

Sound vibration is another quantity 
researched in works related to manufacturing, 
as the machining processes, in general, 
they produce sound due to friction in the 
workpiece/tool contact zone. One of the 
applications for this quantity is to determine 
the relationship between the roughness of the 
part and the cutting parameters, in [14] comes 
to the conclusion that the feed is the parameter 
that has the greatest relationship with the 
roughness of the piece when analyzing the 
frequency of sound vibration. Another area 
of interest is with regard to tool wear, in [15] 
shows that it is possible to determine tool flank 
wear ranges according to the sound vibration 
emitted during machining, obtaining a hit 
rate above 95%.

PROCESS SIGNATURES
The interaction between the machine, 

tool and material generates response patterns 
of some physical quantities given a certain 
cutting condition, this is the so-called process 
signature. Such standards can be correlated 
to several process characteristics, such as 
surface integrity, this parameter is extremely 
important for the industry, as it has a direct 
influence on the quality of the final product.

In [4], he presents a methodology of process 
signatures so that, based on the conditions 
of the final surface integrity of the part, it 
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is possible to adjust the cutting parameters 
during the manufacturing process. Based on 
the relationship between the internal loads 
in the material and the physical changes 
generated in it, process signatures are created 
to correlate cutting conditions and parameters 
with surface quality.

Another factor that generates patterns 
when analyzing some physical quantities is 
the wear of the tool, therefore, there are many 
works in the area of monitoring the state of 
the tool and each sensor generates a different 
process signature.

In [16], he proposes to use several sensors 
to monitor the tool, aiming to correlate the 
response of the sensors with their state. Based 
on the data obtained, it is claimed to be 
possible to determine a signature for the tool 
breakage, using both an accelerometer and an 
acoustic emission sensor.

In [17], tool wear and cutting parameters 
are related from the sound generated during 
the manufacturing process. The variable 
parameters under study are feed and cutting 
speed, while depth of cut is a fixed parameter. 
The magnitude of a given frequency is 
compared with the noise generated by the 
motor, due to the different stages of tool wear. 
From the data obtained, a process signature is 
identified based on a spectrogram.

In [18], tool wear in the gear manufacturing 
process is monitored through the acoustic 
emission signal. To perform the classification, 
the fusion of responses from different 
classifiers is used. With data in the frequency 
domain, classifiers were used to determine 
tool wear (Hidden Markov Model, Bayesian 
Inference, Gaussian Mixture and K-means) 
and to improve the accuracy of the model, the 
fusion of the classifiers was proposed.

METHODOLOGY
The methodology used in this research 

can be seen in Fig. 2. The first stage consists 

in the development of hardware and software 
for data acquisition. Then, data collection 
takes place on the working machine tool. In 
pose of the data, the third step is carried out, 
which consists of processing the data acquired 
according to [19]. From the processed data, 
an exploratory analysis is carried out in search 
of insights to choose the machine learning 
algorithm and, finally, generates a solution 
that identifies the process signature.

MACHINE TOOL 
INSTRUMENTATION
The temperature sensor, type K 

thermocouple, was fixed on the secondary 
cutting surface, there is a distance of 4 mm 
from the cutting edge, as shown in Fig. 3.

The vibration sensor, 780B, manufactured 
by the company Wilcoxon Research, the entire 
signal conditioning step of this sensor is in 
[19]. To avoid contact between the transducer 
and the chip, it was decided to perform the 
measurement on the Y axis, which is parallel 
to the tool feed, as can be seen in Fig. 4.

To measure the sound vibration, an electret 
microphone was used, the entire signal 
conditioning step of this sensor is in [19]. The 
microphone was installed on the tool holder 
pointing towards the cutting region, there is 
a distance of approximately 800 mm from the 
main cutting edge, as can be seen in Fig. 5.

DATA ACQUISITION SYSTEM
For data acquisition, embedded platforms 

Tiva C Connected LaunchPad were used, 
developed by the company Texas Instruments, 
for the sensor layer and a Raspberry Pi 2 
model B board for the master layer The 
representation of the developed system can 
be seen in Fig. 6, the sensor layer is modular, 
making it possible to add new devices to the 
LAN, being responsible only for capturing and 
sending data. The master layer is responsible 
for identifying the sensors that are available 
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Figure 1: Representation of a monitoring system.

Figura 2. Metodologia. 

Figura 3. Fixação do Termopar. 

Figure 4. Fixation of the Accelerometer. 
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on the LAN and managing the acquisition 
and collection of data.

The time diagram representation of the 
data acquisition system can be seen in Fig. 
7. The master layer enables two periods, the 
acquisition period, in which the sensors 
collect data in parallel for a fixed time of 5 
seconds and, at the end of this period, the 
transmission period begins, which serializes 
the collection of the data of each module in 
the sensor layer.

SETUP EXPERIMENTAL 
To carry out the experiments, the ROMI 

Centur 30D machine tool was used, the 
materials machined were 25.4 mm diameter 
cylinders of aluminum and SAE 1020 steel 
and the tool to perform the machining 
is TNMG160408R-C NS530 from the 
manufacturer Tungaloy . The cutting 
parameters were: cutting speed of 200 m/min; 
cutting depth of 0.30 mm (finish) and 1.00 
mm (rough); feed rate of 0.10 mm/rev (finish) 
and 0.25 mm/rev (rough).

RESULTS
For the representation of the machining 

conditions, a pattern was used in the graphics, 
such consideration can be seen in Tab. 1. The 
first and second columns represent the ID and 
symbol used in the charts; the third column 
indicates the machined material; the fourth 
column represents the depth of cut (ap) and 
the advance (f) of the tool used during the 
experiment.

EXPLORATORY ANALYSIS
For the temperature magnitude, the 

difference between the measured temperature 
and the ambient temperature, obtained 
by a thermometer inside the room, was 
calculated. In Fig. 9 shows the distribution of 
temperature variation on the vertical axis and, 
on the horizontal axis, the experiments are 

numbered according to the data in Tab.1.
It is noted that the finishing conditions 

(Experiment 5 for aluminum and Experiment 
6 for steel) are the ones with the smallest 
temperature variations. On the other hand, 
the greatest temperature variations occurred 
in the roughing condition (Experiment 1 
for aluminum and Experiment 2 for steel), 
something logical to think about due to 
the fact that in roughing there is a greater 
removal of material, increasing the specific 
energy and, consequently, generating more 
heat. Furthermore, within the two classes, it 
is noted that aluminum (experiments 1 and 
5) generated a smaller temperature variation 
when compared to the temperature generated 
by steel (experiments 2 and 6).

For the acceleration magnitude, the Root 
Mean Square (RMS) was calculated. In 
Fig. 10 shows the RMS distribution of the 
acceleration signal on the vertical axis and, 
on the horizontal axis, the experiments are 
numbered according to the data in Tab. 1.

It can be seen that rough machining 
(Experiment 1 for aluminum and Experiment 
2 for steel) caused greater acceleration 
amplitudes than the finish machining 
situation (Experiment 5 for aluminum and 
Experiment 6 for steel), making consideration 
of comparing the same material. This is 
intuitive, as the efforts caused during a 
roughing operation are greater than those 
required for finishing, due to the rigidity of 
the tool holder. Another interesting factor 
that can be raised is that in the roughing and 
finishing conditions, the average of the RMS 
value of the experiments for the aluminum 
material is higher, considering the same 
situation, than for the steel. Therefore, for this 
frequency range analyzed, aluminum absorbs 
vibration better.

For the audio magnitude, the Root Mean 
Square (RMS) was calculated. In Fig. 11 shows 
the distribution of the RMS of the audio signal 
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Figura 5. Fixação do microfone.

Figure 6. Data Acquisition System. 

Figure 7. Acquisition system timing diagram. 
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ID Symbol Material Cutting Parameters

1 Aluminum ap = 1,00 mm
 f  = 0,25 mm/rev

2 Steel ap = 1,00 mm
 f  = 0,25 mm/rev

3 Steel ap = 0,30 mm
 f  = 0,25 mm/rev

4 Aluminum ap = 0,30 mm
 f  = 0,25 mm/rev

5 Aluminum ap = 0,30 mm
 f  = 0,10 mm/rev

6 Steel ap = 0,30 mm
 f  = 0,10 mm/rev

7 Steel ap = 1,00 mm
 f  = 0,10 mm/rev

8 Aluminum ap = 1,00 mm
 f  = 0,10 mm/rev

Tabela 1. Representação e dados utilizados nos experimentos.

Figure 9. Temperature variation data for the different experiments.
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on the vertical axis and, on the horizontal axis, 
the experiments are numbered according to 
the data in Tab. 1.

When analyzing the data distribution, it 
is observed that, for the steel material, the 
rough machining (experiment 2) caused an 
RMS of sound vibrations of greater amplitude 
than the finishing machining (experiment 6). 
On the other hand, looking at the aluminum 
material, the situation differed, as the 
finishing situation (experiment 5) generated 
a higher RMS than for roughing (experiment 
1). Another analysis that can be done is that 
the data for the experiments whose machined 
material is aluminum (experiments 1, 4, 5 
and 8) was higher than for the steel material 
(experiments 2, 3, 6 and 7).

MACHINE LEARNING ALGORITHM
To extract the process signature, the 

classification algorithm based on Artificial 
Neural Network (ANN), cuja arquitetura é 
denominada Radial Basis Function (RBF), 
The topology used can be seen in Fig. 12. 
This denomination is due to the fact that 
the activation function of the neurons of the 
first layer is of radial basis, as, for example, a 
Gaussian function, used in this work. For the 
908 external turning samples, the dataset was 
separated into 75% for training and 25% for 
testing, using the cross-validation technique 
k-fold with 5 iterations. 

The weight matrix between the input layer 
and the first layer can be seen in Tab. 3. Such 
weights indicate the cluster position obtained 
by the k-means algorithm for the data under 
analysis. Note that the weights related to the 
third entry (third column of the table) have 
greater variation, which indicates that the third 
entry (temperature variation) is a variable 
with a high capacity for data separation, as 
well as the second entry (audio).

The weight matrix between the first layer 
and the output layer can be seen in Tab. 4. 

The activation function of the intermediate 
layer was the hyperbolic tangent (tanh) and 
the softmax function was used in the output 
layer to identify the probability of occurrence 
of each of the classes under analysis.

The confusion matrix that relates the 
observed variable with the predicted one for 
the model in question is presented in Tab. 5. 
It is observed that the model had difficulty 
with experiment 8, which had a low accuracy, 
less than 30%. The model had a total accuracy 
of 79.74% and the precision between classes 
ranged from 70% to 100%.

CONCLUSIONS
In this article, a modular monitoring 

system was developed that allows the parallel 
acquisition of data during a manufacturing 
process. With the data acquired from this 
system, a classification algorithm based on 
ANN was proposed to classify machined 
material and cutting parameters: feed and 
depth of cut.

The master layer performed well in terms 
of speed, with three devices in the sensor layer, 
but adding new devices can cause the system 
to slow down.

ANN obtained a hit rate of 79.74%, showing 
a good performance for the prediction step, 
proving that this technique can generate 
process signature. There is a possibility that, 
by collecting more data, the accuracy of the 
model can be increased.

Most of the classification algorithm errors 
occurred due to the dispersion of the tool 
acceleration data. Therefore, it is necessary to 
investigate the behavior of this variable when 
changing the location of the accelerometer, 
making the measurement more sensitive to 
the parameters analyzed.
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Figure 10. RMS value of the acceleration data for the different experiments.

Figure 11. RMS value of the audio data for the different experiments.
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Figure 12. RBF used for classification.

w' 1 2 3

1 107,8 440,1 32,9

2 78,6 279,4 53,3

3 85,5 350,1 29,1

4 102,3 423,2 4,87

5 80,9 500,2 2,2

6 59,0 186,5 5,2

7 88,7 126,9 16,9

8 72,1 205,5 31,7

Table 3. Matrix of weights between the input layer and the first layer.

w" 1 2 3 4 5 6

α -0,0 0,1 0,2 -0,2 0,0 0,5

1 5,7 -6,0 11,1 -11,1 7,6 -7,6

2 -0,0 -0,3 -4,8 4,8 -3,1 3,2

3 -3,5 3,6 2,8 -2,8 5,8 -5,8

4 4,3 -4,1 -12,0 11 -13,2 13.2

5 -14,6 14,9 -6,8 6,8 -4,7 4,6

6 -13,5 13,0 -9,8 9,9 0,4 -0,3

7 -6,5 6,4 0,3 -0,3 0,0 -0,0

8 10,0 -9,3 10,6 -10,6 1,1 -1,2

Table 4. Weight matrix between the first layer and the output layer. 
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