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Abstract: Due to the COVID-19 worldwide 
pandemic situation, automatic audio 
classification research has been of interest for 
analysis of respiratory sounds. Several deep 
learning approaches have shown promising 
performance for distinguishing COVID-19 in 
respiratory cycles. In this work we explored 
the usage of transfer learning from a pre-
trained end-to-end deep-learning based audio 
embeddings generator named AemResNet, 
applied to the classification of respiration and 
coughing sounds into healthy or COVID-19. 
We experimented with the publicly available 
large-scale Cambridge Crowdsourced 
dataset of respiratory sounds collected to 
aid diagnosis of COVID-19. Our presented 
work focuses into 3 experimental tasks: 1) 
detection of COVID-19 from a combination 
of breath and cough sounds, 2) detection of 
COVID-19 from breath sounds only, and 3) 
detection of COVID-19 from cough sounds 
only. The experimental results obtained over 
this respiratory dataset show that a pre-
trained audio embedding generator achieves 
competitive performance compared to the 
recent published state-of-the-art.
Keywords: Audio classification, cough 
sounds, COVID-19 detection, deep learning, 
respiratory sounds, transfer learning.

INTRODUCTION
Coronavirus (COVID-19) is an infectious 

disease caused by the severe acute respiratory 
syndrome coronavirus (SARS-CoV-2) virus 
[1] first detected in Wuhan, China in 2019. 
On March 2020th, COVID-19 was declared a 
pandemic by the World Health Organization 
(WHO). Most people experience moderate 
respiratory symptoms such as: coughing, 
fever, and shortness of breath.  The first time 
this novel virus was detected was within 
a cluster of patients with pneumonia of 
unknown cause. According to the WHO, 
15% of overall COVID-19 patients present a 

severe pneumonia [1], which is auscultated 
by a physician listening respiratory sounds 
through breath and cough. The main purpose 
of recording respiratory sounds is to find a 
weakness of hypoventilation which can lead 
to diagnose the patient illness. 

Nowadays, there are several methods 
proposed to distinguish the respiratory cycles, 
e.g., identifying a shortness of breath mostly 
related to pneumonia. The implementation 
of the most recent approaches on respiratory 
sound classification includes a recurrent 
neural network used for lung sound 
classification in [2] to predict respiratory 
anomalies is proposed in [3], a deep learning 
architecture to detect possible lung disease 
in presented in [4] by classifying respiratory 
anomalies. A VGG16 CNN for automatic 
classification of respiratory sounds was 
proposed in [5] also by means of deep 
learning.

As well, COVID-19 aimed works have 
taken part on the research community. The 
work reported in [6] shows the efforts on the 
creation of an Android application aimed 
to collect different sounds from patients 
such as breath, cough, and speech; with 
this, they have created a dataset containing 
more than 459 samples from 378 patients 
through a crowdsourced methodology, 
named Cambridge Crowdsourced dataset. 
In this work, some machine learning (ML) 
techniques such as Support Vector Machines 
(SVM) were used as the classifier for 
COVID-19 detection. In [7], the composition 
of residual network blocks is used to classify 
COVID-19 based on audio spectrograms 
and motivates to a comprehensive follow-up 
research. On [8], respiratory audio recordings 
are treated as a visual representation through 
two different spectrogram configurations 
and as raw audio, each of these samples are 
inputted into a CNN layer and the output 
is concatenated and ensembled to classify 
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COVID-19. Overall, it can be observed how 
deep learning is currently leading the state-
of-the-art (SOTA) when it comes to audio 
classification for COVID-19.

In this work we propose the use of an 
end-to-end (e2e) deep learning-based model 
to identify healthy breath and/or coughing 
sounds from COVID-19 ones. We have 
arranged our work as follows: Section II 
describes the methodology followed for the 
implementation of the deep learning audio 
classification of healthy vs COVID-19 sounds; 
Section III presents a clear explanation on 
the experimental setup; Section IV presents 
the experimental results obtained and the 
discussion around them; and finally, Section 
V presents the conclusions drawn from this 
work.

METHODOLOGY
A deep learning approach for detection 

of COVID-19 respiratory sounds presented 
in this work, based on an end-to-end (e2e) 
convolutional neural network (CNN); this 
means that no additional audio spectral 
representation is needed since the time-domain 
signals are the input to the neural network 
architecture. This approach seems optimal 
when considering the dedicated hardware 
limitations for inference deployment. The 
core of this work is an ongoing effort of the 
e2e audio embeddings generator described 

in previous published works [9]–[12], where 
pre-trained models are created through an 
available large audio dataset, that efficiently 
generate robust audio embeddings aimed for 
different audio scene and events classification. 
The proposed e2e CNN architecture is named 
AemResNet, and it comprises three main 
blocks as seen in Fig 1: the low-level feature 
block  (LLF) that acts as a front-end learnable 
feature extraction module, the high-level 
feature block (HLF) that is trained to become 
a deep learning-based audio embeddings 
generator, and a final classification block that 
is trained with the audio embeddings output 
by the HLF.

The purpose of the LLF block is to 
discriminate and extract features based 
purely from raw audio; this block replaces 
the visual representation of audio through 
spectrograms commonly used in most audio 
classification tasks. In Fig 1, the details of 
this block are described, where we find two 
1-dimensional (1D) strided convolutional 
layers (Conv), each followed by a batch 
normalization layer (BN) and a ReLu 
activation function. The 16 kHz time-domain 
audio waveform inputted to the LLF block 
is converted to 128 channels using a time 
window resolution of 10ms after an added 
max-pool layer. For each second of audio 
input, the LLF block creates a [128, 1, 100] 
dimension tensor which act as a trainable 

Fig. 1. AemResNet archictecture. The LLF and HLF blocks are pretrained with a large dataset to generate 
audio embeddings, and the classifier layer is trained by means of transfer learning.
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correspondent to a spectral filterbank feature 
extraction. These signal handling values were 
chosen since we have observed heuristically 
that results in efficient development of CNNs 
for audio classification tasks. The sampling 
frequency of the audio signal is an important 
variable which can be set to a higher value 
that might result in a better audio quality, at 
the cost of increasing the model complexity 
(number of parameters and size). From this, 
we have found that 16 KHz is a good tradeoff 
between audio quality for classification 
and low complexity aimed to the purpose 
of deployment as mentioned before for e2e 
audio classification solutions. 

The output of the LLF block creates an 
image-like tensor that is the direct input 
to the HLF block. The HLF block is built 
as a CNN architecture which is the most 
common approach for computational vision. 
For AemResNet, we set this HLF stage with a 
ResNet topology of 18 layers [13]. Details for 
this ResNet are also shown in Fig 1. The output 
of its last convolutional layer is average pooled 
to produce a vector of 512 audio embeddings 
that represent a condensed representation 
of the audio sample. This average pool layer 
brings flexibility when dealing with different 
lengths of audio inputs, while maintaining the 
same parameters of the architecture.

The last stage of the AemResNet acts as 
a classifier, which is the composition of a 
dropout layer (DO) to reduce overfitting and 
a fully connected layer with linear activation 
functions. At the last part of this block, a 
SoftMax layer is used at the output to present 
the normalized values based on the number of 
classes specified.

EXPERIMENTATION
AemResNet was pre-trained over a large 

set of audio data, this resulted in a pre-trained 
model that is later fine-tuned based on the 
audio classification task such as COVID-19 

diagnosis based on respiratory sounds. All 
experimentation was executed using the 
Pytorch framework [14].

PRE-TRAINING STAGE
Both LLF and HLF stages are pre-trained 

using AudioSet, a large dataset of manually 
annotated audio events released by Google 
[15], containing 2.1 million samples equivalent 
to 5.8 thousand hours of recordings in which 
527 different audio classes were labeled. 
Before using this embedding generator 
model for a specific classification application, 
the final classification block is removed, 
i.e. the fully connected layer, resulting 
in a 512-dimensional audio embeddings 
representation as the output. AemResNet 
used Audioset as pretraining as follows: the 
single channel raw audio is downsampled to 
16 KHz, it is then standardized in amplitude 
by subtracting the mean and dividing it by the 
standard deviation of the signal. As well, data 
augmentation techniques such as random 
noise addition, random segment cropping of 
the audio sample, random gain variation and 
the widely used mixup data augmentation 
technique. During the training stage, a batch 
of audio clips were selected randomly into the 
form of mini batches to train the model. For 
validation, the complete standardized audio 
clips were used for inference.

Adam optimizer with a learning rate of 
5x10-⁴ was used, with a weight decay of 1x10-

⁸, and a mini batch size of 512 over 80 epochs. 
Cosine aligned learning rate schedule was 
used. This audio embedding was trained 
using the available unbalanced set and 
validated with the evaluation set for the 527 
classes. This audio embedding generator 
model resulted in 11,744,143 number of 
trainable parameters, with a mean average 
precision (mAP) of 0.3690 over the AudioSet 
evaluation data, and it is the exact same one 
used in [12]. 
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Task Learning Rate Learning Rate % Dropout

Task 1 1x10-3 80 0.2

Task 2 1x10-3 60 0.2

Task 3 1x10-6 90 0.9

Table I. Optimal hyper-parameters found for 
aemresnet per task.

END-TO-END CNN FOR COVID-19 
DETECTION
The pre-trained audio 

embedding generator was used to 
train a COVID-19 classifier using the 
commonly adopted transfer learning 
technique [16]. For this purpose, the 
Cambridge Crowdsourced dataset described 
in [6] was used as the target application 
data. The University of Cambridge launched 
an application in Android and on a website 
[17] in which participants are asked to fill 
demographics general information and 
symptoms check. The dataset comprises 459 
cough and breath samples from 378 users 
from Web and Android applications until 
May 2020. These data were annotated by 
experts and the audio samples were carefully 
checked to guarantee the quality of the data 
that contains only cough and breathing. 
As a preprocessing step, audio data was 
processed to be single channel with 16kHz 
sampling rate on a 16-bit resolution, and 
standardized in amplitude. Both web and 
Android app sources were used as samples 
for   experimentation, and followed the 
authors proposal in [6] into three different 
experimental tasks:

•	 Task 1. Cough + breath sounds are used 
to classify COVID-19 vs healthy samples 
from 66 user (282 samples which 
represented 32% of the audio samples) 
and 220 users (596 samples representing 
68% of the audio samples), respectively. 
Where COVID-19 samples included 
patients with and without cough or 

symptoms against healthy patients that 
have not reported symptoms as well as a 
clean medical history. 

•	 Task 2. Cough sounds are used to classify  
COVID-19 vs healthy samples from 23 
user (54 samples which represented 
63% of the audio samples) and 29 users 
(32 samples representing 37% of the 
audio samples), respectively. Where 
COVID-19 samples included patients 
that reported cough as a symptom, and 
healthy patients that presented cough as 
well but have a clean medical history.

•	 Task 3. Breath sounds are used to classify 
healthy vs COVID-19 samples from 23 
user (54 samples which represented 
73% of the audio samples) and 18 users 
(20 samples representing 27% of the 
audio samples), respectively. Where 
COVID-19 samples included patients 
that reported cough as a symptom, and 
healthy patients that presented cough as 
well but have declared asthma in their 
medical history.

The training strategy followed for this 
application is similar to the pre-training of the 
audio embedding generator: Adam optimizer 
was used with a learning rate of 1x10-3 for 
Task 1 and Task 2, Task 3 used 1x10-6 , weight 
decay of 1e-8, mini batch size of 32 over 400 
epochs, cosine aligned learning rate schedule, 
and warm up of 20 epochs before mixup. It 
is important to notice that the Cambridge 
Crowdsourced dataset presents a highly 
imbalanced number of samples per condition, 
i.e. there is a significantly larger number of 
healthy breath and cough samples compared 
to the COVID-19 ones (approximately 73% 
against 27%, respectively.). Due to this issue, 
a focal loss approach was used in the loss 
function [18] for all of our experiments, 
resulting in a more efficient training process. 

An exhaustive search was executed to find 
optimal learning rate and dropout values 
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hyperparameters in the classifier block; 
learning rates from 1x10-3 to 1x10-6 and drop 
out values from 0.1 to 0.9 where explored. 
Additionally, as observed in previous works 
[9], [12], we also explored the flexibility of the 
audio embeddings generator to dynamically 
adapt to the current target application by 
allowing to adjust its weights during training. 
Different learning rate values for the LLF and 
the HLF were utilized as a percentage of the 
fully connected layer learning rate; to fine-
tune the model, this percentage was swept 
through different values from 10% to 100% in 
increments of 10%. The optimal values found 
for AemResNet across the three different tasks 
can be found in Table I.

Since there is no suggested official data 
split available for training/validation of 
the developed classification models, we 
randomly defined a set of 5 custom folds 
with a split 80% of the data for training, 
and 20% for validation (80/20 split). In all 
5 folds, the proportion of available healthy 
and COVID-19 samples in maintained in 
both the training and validation split. The 
model obtained after training the healthy 
vs and COVID-19 classifier using the pre-
trained audio embedding generator resulted 
in 11,473,282 which is 2.3% less  parameters 
due to a smaller classifier block with only 
2 outputs. Additionally, the number of 
multiply-accumulate operations (MACs) 
results in 1.84×10⁹.

For a quantitative assessment of the 
performance of the proposed AemResNet 

model, Precision, Recall, and F1-score metrics 
were used for better understanding of our 
proposed implementation. These metrics are 
defined by:

In Equations (1) and (2), the TP represents 
the true positives or the number of correctly 
classified breath and/or cough sounds into 
healthy or covid, FP represents an incorrect 
classification, and FN represents a miss 
classification. Finally, the computation of the 
F1-score comptured as in (3) to have a single 
metric that represents the performance of our 
model. The experimental results obtained 
based on the metrics defined above are 
presented in the following section.

RESULTS AND DISCUSSION
All experimental results obtained with our 

proposed AemResnet model implementation, 
using the custom 5-fold random 80/20 splits, 
are analyzed in this section. To efficiently 
increase the robustness in the detection 
of COVID-19 in respiratory sounds, we 
leveraged on the use of transfer learning 
for better performance. Table II presents 
the performance results of our approach 
averaged over the defined 5 folds, trained 
and validated for Task 1, Task 2, and Task 3; 
this table also shows how the performance 
obtained by the AemResNet compares to 
results reported in recent published works 
that benchmark over the same dataset [6]–

Table II. Experimental Validation results obtained as the average across 5 folds for AemResnet compared to 
other published Works.  aApproach proposed in this work bF1-score computed with Equation (3).
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[8], [19]. Although these works present their 
results based on different metrics, we made 
an effort to consolidate and compare the 
performance of our approach as much as 
possible. 

We computed the F1-Score from the SVM 
system in [6] based on the reported Precision 
and Recall and using Equation (3). From this, 
it can be observed that AemResNet presents 
a slightly better F1-Score of around 3.0% for 
Task 1, but this difference is more significant 
for Task 2 (almost 12.0%), and for Task 3 (> 
17.0%). This suggest that AemResNet can 
generalize better for COVID-19 detection 
if only one type of respiratory sounds is 
considered, i.e., cough or breath sounds in 
separate models. 

Looking at the Recall results, we can 
compare with the works presented in [6] 
and [8]. In this context, the Recall metric 
represents how accurate are the models at 
correctly classifying healthy and COVID-19 
sounds. We found that AemResNet yields 
better positive classification accuracy 
in Task 2 (>16.5%) and Task 3 (>5.6%).  
However, this was not the case for Task 1, 
where AemResNet results in <4.6% Recall. 
Lastly, we compared our F1-score results to 
the ones reported in [19]various models of 
Artificial Intelligence (AI, where AemResNet 
felt short to the 1D CNN used in their work, 
particularly for Task 1 (~17.5%). A major 
difference here could be the use of efficient 
data augmentation procedures, which would 
suggest that handling of more data would 
be expected to be beneficial. We believe we 
could adopt this type of data augmentation 
to increase the robustness of our own e2e 
model and constitutes part of our ongoing 
research. Overall, the results obtained by 
AemResNet suggest that the use of the pre-
trained deep audio embeddings applied to 
the task of COVID-19 detection is a robust, 
convenient, and competitive approach.

CONCLUSION
The experimental results presented in this 

work prove that AemResNet can be applied to 
classify breath and cough sounds into healthy 
or COVID-19 samples, with comparable 
results to the existing SOTA reported in the 
literature. The attractive characteristic of 
this e2e approach is that it avoids the need 
of additional pre-processing steps for feature 
extraction at the front-end, thus facilitating its 
portability into an inference engine. Through 
the use of pre-trained deep audio embeddings 
generator, a COVID-19 detection classifier 
model was build through transfer learning 
that achieved a F1-score of 0.7332 for cough 
and breath sounds combined, 0.8773 for 
cough sounds, and 0.8654 for breath sounds, 
over the 2020 Cambridge Crowdsourced 
dataset.



8
International Journal of Health Science ISSN 2764-0159 DOI 10.22533/at.ed.1592332230061

REFERENCES
1. “Coronavirus.” https://www.who.int/westernpacific/health-topics/coronavirus (accessed Sep. 18, 2021).

2. A. Manzoor, Q. Pan, H. J. Khan, S. Siddeeq, H. M. A. Bhatti, and M. A. Wedagu, “Analysis and Detection of Lung Sounds 
Anomalies Based on NMA-RNN,” in 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Dec. 
2020, pp. 2498–2504. doi: 10.1109/BIBM49941.2020.9313197.

3. L. Pham, I. McLoughlin, H. Phan, M. Tran, T. Nguyen, and R. Palaniappan, “Robust Deep Learning Framework For Predicting 
Respiratory Anomalies and Diseases,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine 
Biology Society (EMBC), Jul. 2020, pp. 164–167. doi: 10.1109/EMBC44109.2020.9175704.

4. L. D. Pham, H. Phan, R. Palaniappan, A. Mertins, and I. Mcloughlin, “CNN-MoE based framework for classification of 
respiratory anomalies and lung disease detection,” IEEE J. Biomed. Health Inform., pp. 1–1, 2021, doi: 10.1109/JBHI.2021.3064237.

5. K. Minami, H. Lu, H. Kim, S. Mabu, Y. Hirano, and S. Kido, “Automatic Classification of Large-Scale Respiratory Sound 
Dataset Based on Convolutional Neural Network,” in 2019 19th International Conference on Control, Automation and Systems 
(ICCAS), Oct. 2019, pp. 804–807. doi: 10.23919/ICCAS47443.2019.8971689.

6. C. Brown et al., “Exploring Automatic Diagnosis of COVID-19  from Crowdsourced Respiratory Sound Data,” San Diego, p. 
11.

7. H. Coppock, A. Gaskell, P. Tzirakis, A. Baird, L. Jones, and B. Schuller, “End-to-end convolutional neural network enables 
COVID-19 detection from breath and cough audio: a pilot study,” BMJ Innov., vol. 7, no. 2, pp. 356–362, Apr. 2021, doi: 10.1136/
bmjinnov-2021-000668.

8. M. A. Nessiem, M. M. Mohamed, H. Coppock, A. Gaskell, and B. W. Schuller, “Detecting COVID-19 from Breathing and 
Coughing Sounds using Deep Neural Networks,” in 2021 IEEE 34th International Symposium on Computer-Based Medical 
Systems (CBMS), Jun. 2021, pp. 183–188. doi: 10.1109/CBMS52027.2021.00069.

9. P. Lopez-Meyer, J. A. del Hoyo Ontiveros, H. Lu, and G. Stemmer, “Efficient End-to-End Audio Embeddings Generation for 
Audio Classification on Target Applications,” in ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP), Toronto, ON, Canada, Jun. 2021, pp. 601–605. doi: 10.1109/ICASSP39728.2021.9414229.

10. J. J. Huang and J. J. A. Leanos, “AclNet: efficient end-to-end audio classification CNN,” ArXiv181106669 Cs Stat, Nov. 2018, 
Accessed: Aug. 17, 2021. [Online]. Available: http://arxiv.org/abs/1811.06669

11. J. Huang, H. Lu, P. Lopez Meyer, H. Cordourier, and J. Del Hoyo Ontiveros, “Acoustic Scene Classification Using Deep 
Learning-based Ensemble Averaging,” in Proceedings of the Detection and Classification of Acoustic Scenes and Events 2019 
Workshop (DCASE2019), 2019, pp. 94–98. doi: 10.33682/8rd2-g787.

12. C. A. Galindo-Meza, P. Lopez-Meyer, and J. A. del Hoyo Ontiveros, “Classification of Respiration Sounds Using Deep Pre-
trained Audio Embeddings,” p. 4.

13. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” ArXiv151203385 Cs, Dec. 2015, 
Accessed: Apr. 18, 2021. [Online]. Available: http://arxiv.org/abs/1512.03385

14. A. Paszke, S. Gross, and F. Massa, “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in Advances 
in Neural Information Processing Systems 32, Curran Associates, Inc., 2019, pp. 8024--8035.

15. J. F. Gemmeke et al., “Audio Set: An ontology and human-labeled dataset for audio events,” in 2017 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2017, pp. 776–780. doi: 10.1109/ICASSP.2017.7952261.

16. J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural networks?,” ArXiv14111792 Cs, 
Nov. 2014, Accessed: Sep. 18, 2021. [Online]. Available: http://arxiv.org/abs/1411.1792

17. “New app collects the sounds of COVID-19,” University of Cambridge, Apr. 06, 2020. https://www.cam.ac.uk/research/
news/new-app-collects-the-sounds-of-covid-19 (accessed Sep. 18, 2021).

18. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense Object Detection,” ArXiv170802002 Cs, Feb. 2018, 
Accessed: Apr. 18, 2021. [Online]. Available: http://arxiv.org/abs/1708.02002



9
International Journal of Health Science ISSN 2764-0159 DOI 10.22533/at.ed.1592332230061

19. K. K. Lella, A. Pja, and Department of Computer Applications, NIT Tiruchirappalli, Tamil Nadu, India, “Automatic 
COVID-19 disease diagnosis using 1D convolutional neural network and augmentation with human respiratory sound based on 
parameters: cough, breath, and voice,” AIMS Public Health, vol. 8, no. 2, pp. 240–264, 2021, doi: 10.3934/publichealth.2021019.


