

TRATADO DE NEUROLOGIA CLÍNICA E CIRÚRGICA

la Edição

Editores

Dr. André Giacomelli Leal Dr. Paulo Henrique Pires de Aguiar Dr. Ricardo Ramina

Colaboradores

Dr. Flávio Leitão Filho

Dr. Roberto Alexandre Dezena

Dr. Samuel Simis

Dr. Murilo Sousa de Meneses

Dr. José Marcus Rotta

TRATADO DE NEUROLOGIA CLÍNICA E CIRÚRGICA

la Edição

Editores

Dr. André Giacomelli Leal Dr. Paulo Henrique Pires de Aguiar Dr. Ricardo Ramina

Colaboradores

Dr. Flávio Leitão Filho

Dr. Roberto Alexandre Dezena

Dr. Samuel Simis

Dr. Murilo Sousa de Meneses

Dr. José Marcus Rotta

Atena

Editora chefe

Prof^a Dr^a Antonella Carvalho de Oliveira

Editora executiva

Natalia Oliveira

Assistente editorial

Flávia Roberta Barão

Bibliotecária

Janaina Ramos

Proieto gráfico

Bruno Oliveira

Camila Alves de Cremo

Daphynny Pamplona

Gabriel Motomu Teshima 2022 by Atena Editora

Luiza Alves Batista Copyright © Atena Editora

Natália Sandrini de Azevedo Copyright do texto © 2022 Os autores

Imagens da capa Copyright da edição © 2022 Atena Editora Shutterstock Direitos para esta edição cedidos à Atena

Edição de arte Editora pelos autores.

Gabriela Jardim Bonet Open access publication by Atena Editora

Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição *Creative Commons*. Atribuição-Não-Comercial-NãoDerivativos 4.0 Internacional (CC BY-NC-ND 4.0).

O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores, inclusive não representam necessariamente a posição oficial da Atena Editora. Permitido o *download* da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.

Todos os manuscritos foram previamente submetidos à avaliação cega pelos pares, membros do Conselho Editorial desta Editora, tendo sido aprovados para a publicação com base em critérios de neutralidade e imparcialidade acadêmica.

A Atena Editora é comprometida em garantir a integridade editorial em todas as etapas do processo de publicação, evitando plágio, dados ou resultados fraudulentos e impedindo que interesses financeiros comprometam os padrões éticos da publicação. Situações suspeitas de má conduta científica serão investigadas sob o mais alto padrão de rigor acadêmico e ético.

Conselho Editorial

Ciências Biológicas e da Saúde

Profa Dra Aline Silva da Fonte Santa Rosa de Oliveira - Hospital Federal de Bonsucesso

Profa Dra Ana Beatriz Duarte Vieira - Universidade de Brasília

Prof^a Dr^a Ana Paula Peron - Universidade Tecnológica Federal do Paraná

Prof. Dr. André Ribeiro da Silva - Universidade de Brasília

Profa Dra Anelise Levay Murari - Universidade Federal de Pelotas

Prof. Dr. Benedito Rodrigues da Silva Neto - Universidade Federal de Goiás

- Prof. Dr. Cirênio de Almeida Barbosa Universidade Federal de Ouro Preto
- Prof^a Dr^a Daniela Reis Joaquim de Freitas Universidade Federal do Piauí
- Profa Dra Débora Luana Ribeiro Pessoa Universidade Federal do Maranhão
- Prof. Dr. Douglas Siqueira de Almeida Chaves Universidade Federal Rural do Rio de Janeiro
- Prof. Dr. Edson da Silva Universidade Federal dos Vales do Jequitinhonha e Mucuri
- Profa Dra Elizabeth Cordeiro Fernandes Faculdade Integrada Medicina
- Profa Dra Eleuza Rodrigues Machado Faculdade Anhanguera de Brasília
- Profa Dra Elane Schwinden Prudêncio Universidade Federal de Santa Catarina
- Prof^a Dr^a Eysler Gonçalves Maia Brasil Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Prof. Dr. Ferlando Lima Santos Universidade Federal do Recôncavo da Bahia
- Prof^a Dr^a Fernanda Miguel de Andrade Universidade Federal de Pernambuco
- Prof. Dr. Fernando Mendes Instituto Politécnico de Coimbra Escola Superior de Saúde de Coimbra
- Prof^a Dr^a Gabriela Vieira do Amaral Universidade de Vassouras
- Prof. Dr. Gianfábio Pimentel Franco Universidade Federal de Santa Maria
- Prof. Dr. Helio Franklin Rodrigues de Almeida Universidade Federal de Rondônia
- Prof^a Dr^a Iara Lúcia Tescarollo Universidade São Francisco
- Prof. Dr. Igor Luiz Vieira de Lima Santos Universidade Federal de Campina Grande
- Prof. Dr. Jefferson Thiago Souza Universidade Estadual do Ceará
- Prof. Dr. Jesus Rodrigues Lemos Universidade Federal do Piauí
- Prof. Dr. Jônatas de França Barros Universidade Federal do Rio Grande do Norte
- Prof. Dr. José Aderval Aragão Universidade Federal de Sergipe
- Prof. Dr. José Max Barbosa de Oliveira Junior Universidade Federal do Oeste do Pará
- Profa Dra Juliana Santana de Curcio Universidade Federal de Goiás
- Profa Dra Lívia do Carmo Silva Universidade Federal de Goiás
- Prof. Dr. Luís Paulo Souza e Souza Universidade Federal do Amazonas
- Prof^a Dr^a Magnólia de Araújo Campos Universidade Federal de Campina Grande
- Prof. Dr. Marcus Fernando da Silva Praxedes Universidade Federal do Recôncavo da Bahia
- Profa Dra Maria Tatiane Gonçalves Sá Universidade do Estado do Pará
- Prof. Dr. Maurilio Antonio Varavallo Universidade Federal do Tocantins
- Prof^a Dr^a Mylena Andréa Oliveira Torres Universidade Ceuma
- Profa Dra Natiéli Piovesan Instituto Federacl do Rio Grande do Norte
- Prof. Dr. Paulo Inada Universidade Estadual de Maringá
- Prof. Dr. Rafael Henrique Silva Hospital Universitário da Universidade Federal da Grande Dourados
- Prof^a Dr^a Regiane Luz Carvalho Centro Universitário das Faculdades Associadas de Ensino
- Prof^a Dr^a Renata Mendes de Freitas Universidade Federal de Juiz de Fora
- Profa Dra Sheyla Mara Silva de Oliveira Universidade do Estado do Pará
- Prof^a Dr^a Suely Lopes de Azevedo Universidade Federal Fluminense
- Profa Dra Vanessa da Fontoura Custódio Monteiro Universidade do Vale do Sapucaí
- Prof^a Dr^a Vanessa Lima Gonçalves Universidade Estadual de Ponta Grossa
- Prof^a Dr^a Vanessa Bordin Viera Universidade Federal de Campina Grande
- Prof^a Dr^a Welma Emidio da Silva Universidade Federal Rural de Pernambuco

Tratado de neurologia clínica e cirúrgica

Diagramação: Natália Sandrini de Azevedo

Correção: Bruno Oliveira

Indexação: Amanda Kelly da Costa Veiga

Revisão: Os autores

Editores: André Giacomelli Leal

Paulo Henrique Pires de Aguiar

Ricardo Ramina

Colaboradores: Roberto Alexandre Dezena

Samuel Simis

Murilo Souza de Menezes

José Marcus Rotta

Dados Internacionais de Catalogação na Publicação (CIP)

T776 Tratado de neurología clínica e cirúrgica / Editores André Giacomelli Leal, Paulo Henrique Pires de Aguiar, Ricardo Ramina. – Ponta Grossa - PR: Atena, 2022.

Formato: PDF

Requisitos de sistema: Adobe Acrobat Reader

Modo de acesso: World Wide Web

Inclui bibliografia

ISBN 978-65-258-0134-6

DOI: https://doi.org/10.22533/at.ed.346221304

1. Neurologia. I. Leal, André Giacomelli (Editor). II. Aguiar, Paulo Henrique Pires de (Editor). III. Ramina, Ricardo (Editor). IV. Título.

CDD 612.8

Elaborado por Bibliotecária Janaina Ramos - CRB-8/9166

Atena Editora

Ponta Grossa – Paraná – Brasil Telefone: +55 (42) 3323-5493 www.atenaeditora.com.br contato@atenaeditora.com.br

DECLARAÇÃO DOS AUTORES

Os autores desta obra: 1. Atestam não possuir qualquer interesse comercial que constitua um conflito de interesses em relação ao artigo científico publicado; 2. Declaram que participaram ativamente da construção dos respectivos manuscritos, preferencialmente na: a) Concepção do estudo, e/ou aquisição de dados, e/ou análise e interpretação de dados; b) Elaboração do artigo ou revisão com vistas a tornar o material intelectualmente relevante; c) Aprovação final do manuscrito para submissão.; 3. Certificam que os artigos científicos publicados estão completamente isentos de dados e/ou resultados fraudulentos; 4. Confirmam a citação e a referência correta de todos os dados e de interpretações de dados de outras pesquisas; 5. Reconhecem terem informado todas as fontes de financiamento recebidas para a consecução da pesquisa; 6. Autorizam a edição da obra, que incluem os registros de ficha catalográfica, ISBN, DOI e demais indexadores, projeto visual e criação de capa, diagramação de miolo, assim como lançamento e divulgação da mesma conforme critérios da Atena Editora.

DECLARAÇÃO DA EDITORA

A Atena Editora declara, para os devidos fins de direito, que: 1. A presente publicação constitui apenas transferência temporária dos direitos autorais, direito sobre a publicação, inclusive não constitui responsabilidade solidária na criação dos manuscritos publicados, nos termos previstos na Lei sobre direitos autorais (Lei 9610/98), no art. 184 do Código Penal e no art. 927 do Código Civil; 2. Autoriza e incentiva os autores a assinarem contratos com repositórios institucionais, com fins exclusivos de divulgação da obra, desde que com o devido reconhecimento de autoria e edição e sem qualquer finalidade comercial; 3. Todos os e-book são *open access, desta forma* não os comercializa em seu site, sites parceiros, plataformas de e-commerce, ou qualquer outro meio virtual ou físico, portanto, está isenta de repasses de direitos autorais aos autores; 4. Todos os membros do conselho editorial são doutores e vinculados a instituições de ensino superior públicas, conforme recomendação da CAPES para obtenção do Qualis livro; 5. Não cede, comercializa ou autoriza a utilização dos nomes e e-mails dos autores, bem como nenhum outro dado dos mesmos, para qualquer finalidade que não o escopo da divulgação desta obra.

EDITORES

- Dr. André Giacomelli Leal
- Dr. Paulo Henrique Pires de Aguiar
- Dr. Ricardo Ramina

COLABORADORES

- Dr Flávio Leitão Filho
- Dr. Roberto Alexandre Dezena
- Dr. Samuel Simis
- Dr. Murilo Sousa de Meneses
- Dr. José Marcus Rotta

COLABORADORES ACADÊMICOS

- Cindy Caetano da Silva
- Emilly Marien Dias da Silva de Souza
- Júlia Lins Gemir
- Kamila Blaka
- Lauanda Raíssa Reis Gamboge
- Pedro Henrique Simm Pires de Aguiar
- Pedro Schmidt dos Reis Matos Figueiredo
- Rafael Peron Carapeba
- Thomás Rocha Campos
- Vinicios Ribas dos Santos

APRESENTAÇÃO

Após três anos de trabalho, o Tratado de Neurologia Clínica e Cirúrgica da Academia Brasileira de Neurocirurgia – ABNc está pronto. Uma obra importante, que reuniu os melhores neurocirurgiões e neurologistas brasileiros, em prol do crescimento e desenvolvimento da nossa querida Academia.

Com 62 capítulos sobre diversos tópicos em Neurologia clínica e cirúrgica, cuidadosamente escritos por especialistas em suas devidas áreas, contém 15 seções, cobrindo os seguintes temas: história da Neurologia, neuroanatomia básica, semiologia e exames complementares, doenças vasculares, doenças desmielinizantes, doenças dos nervos periféricos e neuromusculares, distúrbios do movimento, cefaleia e epilepsia, demências e distúrbios cognitivos, neoplasias, dor e espasticidade, transtorno do sono, neurointensivismo, doenças neurológicas na infância e outros.

Destinada a acadêmicos de medicina, residentes, neurologistas e neurocirurgiões, esta obra promete fornecer um conteúdo altamente especializado, para uma ótima revisão e aprofundamento sobre esses assuntos.

Este livro é um espelho que reflete a todos a grande potência que o Brasil é em Neurologia e Neurocirurgia.

Prof. Dr. André Giacomelli Leal

PREFÁCIO

Este *Tratado de Neurologia Clínica e Cirúrgica* surge num importante momento das áreas da neurociência. Elaborar o diagnóstico neurológico correto sempre representou para o médico um desafio intelectual desde os primórdios das ciências neurológicas modernas no século XVII e, para o paciente, preocupação e ansiedade sobre o curso de sua enfermidade. No passado, a neurologia clínica era uma ciência de doenças interessantes, porém muitas vezes intratáveis, praticada pelo fascínio especial da "estética do diagnóstico". A neurologia cirúrgica, por sua vez, ainda embrionária no início do século passado, foi por muitas décadas frustrada, exibindo um altíssimo índice de mortalidade e morbidade, incompatível com uma medicina que cura e alivia as enfermidades. Felizmente, essa situação mudou fundamentalmente nas últimas décadas. As ciências neurológicas estão se tornando cada vez mais atraentes, ao ver o tratamento como o ponto central da verdadeira tarefa médica, e sua eficiência terapêutica. Exemplos incluem as doenças vasculares do sistema nervoso, as neoplasias benignas e malignas do sistema nervoso, as doenças dos nervos periféricos, o tratamento de epilepsia, dos distúrbios do movimento, da demência e distúrbios cognitivos, da dor e da espasticidade, bem como do sono, sem mencionar os avanços no neurointensivismo.

Neste contexto, o presente *Tratado de Neurologia Clínica e Cirúrgica* surge como uma obra imprescindível para o conhecimento do estado da arte das múltiplas áreas da neurociência. Escrito por especialistas de excelência científica e profissional, este livro toma corpo numa ordem de grandes capítulos sobre quadros clínicos e sintomas relacionados a problemas, guiando o leitor a encontrar rapidamente o caminho para a seleção terapêutica específica. Os capítulos são divididos em seções de conhecimentos gerais em história da neurologia, neuroanatomia básica, e semiologia e exames complementares. Estes são seguidos de capítulos sobre quadros clínicos e doenças do sistema nervoso.

Apesar do grande número de autores contribuintes deste livro, souberam os Editores realizar um trabalho exemplar ao conseguir dar a este Tratado uma estrutura uniforme e didática sobre o patomecanismo e os princípios terapêuticos em discussão dos estudos de terapia mais importantes da atualidade.

Enfim, estamos perante uma obra que não deve faltar na biblioteca daqueles interessados no estudo das áreas médicas e cirúrgicas neurológicas, e de todos os demais que desejam um livro de terapia neurológica que funcione como ferramenta concreta de auxílio nas consultas do dia-a-dia.

Prof. Dr. Marcos Soares Tatagiba
Cátedra em Neurocirurgia
Diretor do Departamento de Neurocirurgia
Universidade Eberhard-Karls de Tübingen
Alemanha

SUMÁRIO

PARTE 1 - HISTORIA DA NEUROLOGIA E CONSIDERAÇÕES GERAIS
CAPÍTULO 11
HISTÓRIA DA NEUROLOGIA
Hélio A. Ghizoni Teive
https://doi.org/10.22533/at.ed.3462213041 PARTE 2 - NEUROANATOMIA BÁSICA
CAPÍTULO 212
NEUROANATOMIA DOS SULCOS E GIROS CEREBRAIS
Vanessa Milanese Holanda Zimpel
Natally Santiago
ttps://doi.org/10.22533/at.ed.3462213042
CAPÍTULO 320
NEUROANATOMIA FUNCIONAL DO CÓRTEX CEREBRAL
Hugo Leonardo Doria-Netto
Raphael Vicente Alves
lttps://doi.org/10.22533/at.ed.3462213043
CAPÍTULO 449
ANATOMIA DA MEDULA ESPINHAL
Luiz Roberto Aguiar
https://doi.org/10.22533/at.ed.3462213044 PARTE 3 - SEMIOLOGIA E EXAMES COMPLEMENTARES
CAPÍTULO 555
SEMIOLOGIA NEUROLÓGICA
Alexandre Souza Bossoni
€ https://doi.org/10.22533/at.ed.3462213045
CAPÍTULO 677
ELETRONEUROMIOGRAFIA
Maria Tereza de Moraes Souza Nascimento
o https://doi.org/10.22533/at.ed.3462213046
CAPÍTULO 787
INTERPRETAÇÃO DO EXAME DO LÍQUIDO CEFALORRAQUIDIANO
Helio Rodrigues Gomes
€ https://doi.org/10.22533/at.ed.3462213047

CAPITULO 895
DOPPLER TRANSCRANIANO
Rafaela Almeida Alquéres
Victor Marinho Silva
Pamela Torquato de Aquino
Marcelo de Lima Oliveira
Edson Bor Seng Shu
o https://doi.org/10.22533/at.ed.3462213048
CAPÍTULO 9104
ECODOPPLER VASCULAR DE VASOS CERVICAIS
Cindy Caetano da Silva
Daniel Wallbach Peruffo
Samir Ale Bark
Viviane Aline Buffon
Robertson Alfredo Bodanese Pacheco
Sérgio Souza Alves Junior
o https://doi.org/10.22533/at.ed.3462213049
CAPÍTULO 10118
ELETROENCEFALOGRAMA
Bruno Toshio Takeshita
Elaine Keiko Fujisao
Caroliny Trevisan Teixeira
Pedro Andre Kowacs
o https://doi.org/10.22533/at.ed.34622130410
CAPÍTULO 11126
POTENCIAIS EVOCADOS
Adauri Bueno de Camargo
Vanessa Albuquerque Paschoal Aviz Bastos
€ https://doi.org/10.22533/at.ed.34622130411
CAPÍTULO 12137
LINGUAGEM – DISTÚRBIOS DA FALA
André Simis
€ https://doi.org/10.22533/at.ed.34622130412
PARTE 4 - DOENÇAS VASCULARES DO SISTEMA NERVOSO
CAPÍTULO 13144
ACIDENTE VASCULAR ENCEFÁLICO ISQUÊMICO
Alexandre Luiz Longo

169
181
194
208
210
223

U https://doi.org/10.22533/at.ed.34622130419
CAPÍTULO 20233
ACIDENTE VASCULAR ENCEFÁLICO HEMORRÁGICO HIPERTENSIVO
Renata Faria Simm
Alexandre Pingarilho
Giovanna Zambo Galafassi
Fernanda Lopes Rocha Cobucci
Paulo Henrique Pires de Aguiar
€ https://doi.org/10.22533/at.ed.34622130420
CAPÍTULO 21237
HEMORRAGIA SUBARACNOIDEA
Vitor Nagai Yamaki
Guilherme Marconi Guimarães Martins Holanda
Eberval Gadelha Figueiredo
€ https://doi.org/10.22533/at.ed.34622130421
CAPÍTULO 22248
ANEURISMAS INTRACRANIANOS
Matheus Kahakura Franco Pedro
André Giacomelli Leal
Murilo Sousa de Meneses
€ https://doi.org/10.22533/at.ed.34622130422
CAPÍTULO 23260
MALFORMAÇÕES ARTERIOVENOSAS CEREBRAIS
Marco Antonio Stefani
Apio Claudio Martins Antunes
Lucas Scotta Cabral
Eduarda Tanus Stefani
€ https://doi.org/10.22533/at.ed.34622130423
PARTE 5 - DOENÇAS DESMIELINIZANTES
CAPÍTULO 24273
DOENÇAS INFLAMATÓRIAS DESMIELINIZANTES DO SISTEMA NERVOSO CENTRAL
Henry Koiti Sato
Matheus Pedro Wasem
Hanaiê Cavalli
€ https://doi.org/10.22533/at.ed.34622130424

CAPITULO 25284
ESCLEROSE MÚLTIPLA
Douglas Kazutoshi Sato
Cássia Elisa Marin
o https://doi.org/10.22533/at.ed.34622130425
CAPÍTULO 26304
NEUROMIELITE ÓPTICA
Mario Teruo Sato
Duana Bicudo
Henry Koiti Sato
€ https://doi.org/10.22533/at.ed.34622130426
PARTE 6 - DOENÇAS DOS NERVOS PERIFÉRICOS, DA JUNÇÃO NEUROMUSCULAR E MUSCULAR
CAPÍTULO 27327
EXAME FÍSICO DO PLEXO BRAQUIAL
Francisco Flávio Leitão de Carvalho Filho
Raquel Queiroz Sousa Lima
Francisco Flávio Leitão de Carvalho
€ https://doi.org/10.22533/at.ed.34622130427
CAPÍTULO 28346
ESCLEROSE LATERAL AMIOTRÓFICA
Frederico Mennucci de Haidar Jorge
€ https://doi.org/10.22533/at.ed.34622130428
CAPÍTULO 29359
SÍNDROME DE GUILLAIN-BARRÉ
Eduardo Estephan
Vinicius Hardoim
€ https://doi.org/10.22533/at.ed.34622130429
CAPÍTULO 30368
MIASTENIA GRAVIS
Camila Speltz Perussolo
€ https://doi.org/10.22533/at.ed.34622130430
CAPÍTULO 31386
MIOPATIAS
Leonardo Valente Camargo
ohttps://doi.org/10.22533/at.ed.34622130431

PARTE 7 - DISTURBIOS DO MOVIMENTO
CAPÍTULO 32402
DOENÇA DE PARKINSON
Hélio A. Ghizoni Teive
o https://doi.org/10.22533/at.ed.34622130432
CAPÍTULO 33417
COREIA, TREMOR E OUTROS MOVIMENTOS ANORMAIS
Jacy Bezerra Parmera
Thiago Guimarães
€ https://doi.org/10.22533/at.ed.34622130433
CAPÍTULO 34440
DISTONIA
Natasha Consul Sgarioni
Beatriz A Anjos Godke Veiga
o https://doi.org/10.22533/at.ed.34622130434
CAPÍTULO 35452
TRATAMENTO CIRÚRGICO DA DISTONIA
Paulo Roberto Franceschini
Bernardo Assumpção de Mônaco
Paulo Henrique Pires de Aguiar
o https://doi.org/10.22533/at.ed.34622130435
PARTE 8 - CEFALEIA E EPILEPSIA
CAPÍTULO 36473
CEFALEIAS
Paulo Sergio Faro Santos
Pedro André Kowacs
Olga Francis Pita Chagas
Marco Antonio Nihi
€ https://doi.org/10.22533/at.ed.34622130436
CAPÍTULO 37500
EPILEPSIA
Elaine Keiko Fujisao
o https://doi.org/10.22533/at.ed.34622130437

PARTE 9 - DEMÊNCIA E DISTÚRBIOS COGNITIVOS
CAPÍTULO 38509
DEMÊNCIAS
Fábio Henrique de Gobbi Porto
Alessandra Shenandoa Heluani
Guilherme Kenzzo Akamine
o https://doi.org/10.22533/at.ed.34622130438
CAPÍTULO 39524
DOENÇA DE ALZHEIMER
Raphael Ribeiro Spera
Bruno Diógenes lepsen
Tarcila Marinho Cippiciani
Renato Anghinah
o https://doi.org/10.22533/at.ed.34622130439
CAPÍTULO 40536
HIDROCEFALIA DE PRESSÃO NORMAL
Amanda Batista Machado
Marcela Ferreira Cordellini
Hamzah Smaili
Sonival Cândido Hunevicz
o https://doi.org/10.22533/at.ed.34622130440
PARTE 10 - NEOPLASIAS DO SISTEMA NERVOSO
CAPÍTULO 41548
VISÃO GERAL DAS NEOPLASIAS DO SISTEMA NERVOSO CENTRAL
Carlos Alexandre Martins Zicarelli
Daniel Cliquet
Isabela Caiado Caixeta Vencio
Paulo Henrique Pires de Aguiar
o https://doi.org/10.22533/at.ed.34622130441
CAPÍTULO 42563
NEOPLASIAS PRIMÁRIAS DO SISTEMA NERVOSO CENTRAL
Erasmo Barros da Silva Jr
Ricardo Ramina
Gustavo Simiano Jung
Afonso Aragão
o https://doi.org/10.22533/at.ed.34622130442

CAPITULO 43575
TUMORES DE BASE DO CRÂNIO
Paulo Henrique Pires de Aguiar
Pedro Henrique Simm Pires de Aguiar
Giovanna Zambo Galafassi
Roberto Alexandre Dezena
Saleem Abdulrauf
€ https://doi.org/10.22533/at.ed.34622130443
CAPÍTULO 44587
TUMORES INTRARRAQUIANOS
Paulo de Carvalho Jr.
Arya Nabavi
Paulo de Carvalho
o https://doi.org/10.22533/at.ed.34622130444
CAPÍTULO 45609
CLASSIFICAÇÃO PATOLÓGICA DOS TUMORES DO SNC E DAS DOENÇAS NEUROLÓGICAS
Ligia Maria Barbosa Coutinho
Arlete Hilbig
Francine Hehn Oliveira
€ https://doi.org/10.22533/at.ed.34622130445
PARTE 11 - DOR E ESPASTICIDADE
CAPÍTULO 46636
DOR
Pedro Antônio Pierro Neto
Giovanna Galafassi
Pedro Henrique Simm Pires de Aguiar
Paulo Henrique Pires de Aguiar
€ https://doi.org/10.22533/at.ed.34622130446
CAPÍTULO 47653
ESPASTICIDADE
Bernardo Assumpção de Monaco
Bernardo Assumpção de Monaco Paulo Roberto Franceschini
Paulo Roberto Franceschini
Paulo Roberto Franceschini Manoel Jacobsen Teixeira
Paulo Roberto Franceschini Manoel Jacobsen Teixeira https://doi.org/10.22533/at.ed.34622130447

€ https://doi.org/10.22533/at.ed.34622130448	
PARTE 12 - TRANSTORNO DO SONO	
CAPÍTULO 4967	3
DISTÚRBIOS DO SONO	
Leonardo Condé	
€ https://doi.org/10.22533/at.ed.34622130449	
PARTE 13 -PRINCÍPIOS EM NEUROINTENSIVISMO	
CAPÍTULO 5068	6
NEUROINTENSIVISMO	
Ana Maria Mendes Ferreira	
Jakeline Silva Santos	
Alysson Alves Marim	
Tiago Domingos Teixeira Rincon	
Kaio Henrique Viana Gomes	
Guilherme Perez de Oliveira	
Eduardo de Sousa Martins e Silva	
Tamires Hortêncio Alvarenga	
Gabriella Gomes Lopes Prata	
João Pedro de Oliveira Jr.	
Fernando Henrique dos Reis Sousa	
Thiago Silva Paresoto	
Luiz Fernando Alves Pereira	
Gustavo Branquinho Alberto	
Lívia Grimaldi Abud Fujita	
Roberto Alexandre Dezena	
€ https://doi.org/10.22533/at.ed.34622130450	
CAPÍTULO 5170	1
HIPERTENSÃO INTRACRANIANA	
Gustavo Sousa Noleto	
João Gustavo Rocha Peixoto Santos	
Wellingson Silva Paiva	
€ https://doi.org/10.22533/at.ed.34622130451	
CAPÍTULO 5271	3
TRAUMATISMO CRANIOENCEFÁLICO	
Robson Luis Oliveira de Amorim	
Daniel Buzaglo Gonçalves	
Bruna Guimarães Dutra	

Henrique Martins
€ https://doi.org/10.22533/at.ed.34622130452
CAPÍTULO 53729
TRAUMATISMO RAQUIMEDULAR
Jerônimo Buzetti Milano
Heloísa de Fátima Sare
€ https://doi.org/10.22533/at.ed.34622130453
CAPÍTULO 54739
COMPLICAÇÕES NEUROLÓGICAS ASSOCIADAS ÀS INTOXICAÇÕES EXÓGENAS E AOS DISTÚRBIOS METABÓLICOS
André E. A. Franzoi
Gustavo C. Ribas
Isabelle P. Bandeira
Letícia C. Breis
Marco A. M. Schlindwein
Marcus V. M. Gonçalves
€ https://doi.org/10.22533/at.ed.34622130454
CAPÍTULO 55765
TRATAMENTO CIRÚRGICO DO INFARTO ISQUÊMICO MALIGNO DA ARTÉRIA CEREBRAL MÉDIA. INDICAÇÕES E LIMITAÇÕES DA CRANIOTOMIA DESCOMPRESSIVA
Ápio Antunes
Rafael Winter
Paulo Henrique Pires de Aguiar
Marco Stefani
Mariana Tanus Stefani
ttps://doi.org/10.22533/at.ed.34622130455
CAPÍTULO 56775
TRAUMATISMO CRÂNIO-ENCEFÁLICO GRAVE. PAPEL DA CRANIOTOMIA DESCOMPRESSIVA
Ápio Claudio Martins Antunes
Marco Antonio Stefani
Rafael Winter
Paulo Henrique Pires de Aguiar Mariana Tanus Stefani
https://doi.org/10.22533/at.ed.34622130456
CAPÍTULO 57
INFECÇÕES DO SISTEMA NERVOSO CENTRAL
Danielle de Lara
João Guilherme Brasil Valim

€ https://doi.org/10.22533/at.ed.34622130457	
PARTE 14 - DOENÇAS NEUROLÓGICAS DA INFÂNCIA	
CAPÍTULO 587	798
SEMIOLOGIA NEUROLÓGICA PEDIÁTRICA	
Matheus Franco Andrade Oliveira	
Juliana Silva de Almeida Magalhães	
€ https://doi.org/10.22533/at.ed.34622130458	
CAPÍTULO 59	307
HIDROCEFALIA NA INFÂNCIA	
Tatiana Protzenko	
Antônio Bellas	
ohttps://doi.org/10.22533/at.ed.34622130459	
CAPÍTULO 60	317
PARALISIA CEREBRAL INFANTIL	
Simone Amorim	
Juliana Barbosa Goulardins	
Juliana Cristina Fernandes Bilhar	
diphttps://doi.org/10.22533/at.ed.34622130460	
PARTE 15 - OUTROS	
CAPÍTULO 61	338
A NEUROPSICOLOGIA NOS TRATAMENTOS NEUROCIRÚRGICOS	
Samanta Fabricio Blattes da Rocha	
Rachel Schlindwein-Zanini	
€ https://doi.org/10.22533/at.ed.34622130461	
CAPÍTULO 62	353
APLICAÇÕES CLÍNICAS DE MODELOS DE MANUFATURA ADITIVA EM NEUROCIRURGIA	
André Giacomelli Leal	
Lorena Maria Dering	
Matheus Kahakura Franco Pedro	
Beatriz Luci Fernandes	
Mauren Abreu de Souza	
Percy Nohama	
lttps://doi.org/10.22533/at.ed.34622130462	
SOBRE OS EDITORES	367
SORRE OS COL ARORADORES E ALITORES	262

Sheila Wayszceyk

PARTE 11 DOR E ESPASTICIDADE

CAPÍTULO 47

ESPASTICIDADE

Bernardo Assumpção de Monaco

Paulo Roberto Franceschini

Manoel Jacobsen Teixeira

INTRODUÇÃO

A espasticidade é um sintoma comum em diferentes lesões neurológicas caracterizada por muscular, como parte da síndrome do neurônio motor superior (NMS). Em 1980, Lance¹ definiu espasticidade como "anormalidade motora caracterizada por aumento dos reflexos tônicos dependente da velocidade do movimento (tono muscular), resultando em hiperreflexia miotática em decorrência de hiperatividade reflexa como componente da síndrome do neurônio de motor superior". Outros achados comuns nos pacientes com espasticidade são: execução inadequada dos movimentos, com co-contrações e movimentos em bloco, reflexos de estiramento anormais, reflexos hiperativos e aumento do tônus muscular, geralmemnte com fraqueza muscular, alentecimento dos movimentos e a incoordenação. Cerca de um terço do acometidos por acidente vascular encefálico (AVE) podem apresentar espasticidade dos membros inferiores, assim como metade dos pacientes com esclerose múltipla (EM) e três quartos das crianças com paralisia cerebral (PC). Mais de 80% dos pacientes sofreram traumatismo raquimedular apresentam espasticidade. Outras etiologias comumente cursam com espasticidade são: traumatismo cranioencefálico (TCE), encefalopatia anóxica, infecções do sistema nervoso central (SNC), tumores, inflamações, doenças neurodegenerativas e metabólicas.

Apesar de a espasticidade poder compensar parcialmente o déficit de força, pode também gerar perdas funcionais e anormalidades mecânicas, o que favorece a ocorrência de espasmos, pode gerar dor, contraturas e desfiguramento. A hipertonia muscular extrema desfavorece a reabilitação, a execução de procedimento fisioterápico, o posicionamento na cadeira de rodas e, no leito, a higiene corporal e favorece a instalação de escaras e de anormalidades articulares ^{4,5}. O reflexo de retirada exagerado gera contrações agudas da musculatura, dor e deslocamento dos doentes da maca, do leito ou da cadeira 5. A espasticidade também interfere na organização da matriz extracelular muscular e articular, compromete a mobilidade, o funcionamento. o posicionamento, o conforto, a oferta dos cuidados, a autoestima, o afeto, o humor e o sono dentre outras atividades e resulta em dor, desfiguração, disfunções sexuais e vesicais (bexiga espástica, dissinergia vésico-ureteral), fadiga, contraturas, risco de quedas, desenvolvimento de escaras, má-adaptação de órteses, sobrecarga do cuidador, perdas econômicas e sobrecarga para as instituições previdenciárias e de assistência^{5,6}.

São achados comuns na espasticidade: a hipertonia muscular especialmente dos músculos anti-gravitários, hiperreflexia segmentar, clono, espasmos dos músculos flexores e extensores, hiperreflexia vesical, sinal do canivete e presença de reflexos posturais primitivos anormais, dentre outros. Os sinais negativos da lesão de neurônio motor superior, como déficit da destreza, fraqueza muscular, paralisia, fadiga, alentecimento dos movimentos, redução da elasticidade dos tecidos e incoordenação motora, costumam acompanhar a hipertonia^{6,7}.

O hemiplégico geralmente apresenta contração de

uma hemiface, tem rotação interna e abdução do ombro, aduz o braço e apresenta flexão do cotovelo, flexão de dedos e de punho, com a coxa rígida em extensão e o pé posicionado em equino-varo (postura de Wernicke-Mann). A criança espástica apresenta os joelhos discretamente fletidos, os pés juntos, as coxas com adução (em tesoura), os pés em equino varo e a marcha digitígrada. O lesado medular geralmente apresenta espasmos em extensão dos membros inferiores, além de apresentarem sintomas neurovegetativos associados^{5–10}.

A avaliação clínica e neurológica detalhada, atribuindo especial atenção para com as funções motoras residuais, incluindo-se a marcha, os reflexos e a ocorrência de espasmos espontâneos ou evocados, as funções urinárias, sexuais e gastrointestinais, a sensibilidade, a identificação de escaras, infecções e cálculos urinários, ossificações heterotópicas, fraturas, unhas encravadas e outras anormalidades é essencial para a seleção do tratamento^{9–12}.

Dentre as escalas que quantificam a espasticidade, duas são as mais utilizadas na neurocirurgia: a escala de Ashworth modificada, que tem 6 graus sendo os menores os menos espásticos (dividida em grau 0; 1; 1+; 2; 3 e 4) e a escala de espasmos de Penn, dividida em 5 graus, sendo os maiores aqueles com mais espasmos (0; 1; 2; 3 e 4)13. A gravidade da função motora em crianças com paralisia cerebral pode ser classificada em cinco níveis de acordo com a GMFCS¹⁴, baseada nas limitações funcionais, necessidade de tecnologias assistivas e dispositivos de suporte como cadeiras de rodas e andadores como: 1) limitações para o desempenho das atividades como correr normalmente e pular em só pé; 2) limitações durante marcha em ambiente externo, necessita de corrimão para subir escada; 3) marcha com o auxílio de dispositivos de suporte; 4) marcha em ambiente interno com auxílio, para deslocamentos utiliza cadeira de rodas; e 5) ausência de marcha. As escalas funcionais mais utilizadas para espasticidade em membros superiores são a sistema de classificação da habilidade manual (MACS) e a função motora fina bimanual (BFMF), ambas com 5 diferentes níveis de classificação, onde os menores níveis correspondem à maior função^{15,16}.

exames complementares consistem em imagens, eletrofisiologia, análise de líquido cefalorraquidiano (LCR) e os que visam identificar doenças que possam interferir na espasticidade. Os bloqueios anestésicos para análise funcional de membros e ocorrência de deformidades estruturadas ajudam a definir as condutas subsequentes. A polieletromiografia, a eletromiografia dinâmica associada à análise cinemática dos movimentos e a estimulação elétrica transcraniana do córtex motor são os instrumentos utilizados para a avaliação eletrofisiológica^{6,9,10}. A análise tridimensional de marcha tem se mostrado importante instrumento para definição de tratamento multidisciplinar integrado¹⁷⁻¹⁹.

TRATAMENTO DA ESPASTICIDADE

A espasticidade não deve ser tratada apenas em função da sua presença, uma vez que pode ser útil para compensar o déficit motor ou evitar eventos trombóticos. Deve ser reduzida a hipertonia excessiva que induz prejuízos funcionais adicionais. O tratamento visa a melhorar a amplitude dos movimentos, a mobilidade articular, a marcha, a adaptação das próteses, o posicionamento e a cosmese e a reduzir o consumo de energia, a ocorrência de espasmos, a dor, a sobrecarga dos cuidadores e do aparelho de saúde e a prevenir a instalação de escaras, retrações tendíneas, lesões ou disfunções viscerais. É importante considerar se déficit motor e de destreza são geralmente mais incapacitantes que a espasticidade. Isto significa que o tratamento da espasticidade deve fundamentar-se na seleção adequada dos doentes para que os ganhos funcionais dentro de certos limites sejam, pelo menos, satisfatórios e não constituam prejuízos adicionais para os doentes e seus cuidadores. Caso não seja impactante, não necessita tratamento. Influenciam também o plano

e o momento do tratamento, a idade da criança, a presença de morbidades associadas, como presença de contraturas fixas, convulsões e comprometimento cognitivo, capacitar os famíliares e terapeutas⁶.

O tratamento da espasticidade deve iniciarse com medidas conservadoras, incluindo-se o uso de medicações específicas, execução de programa de reabilitação orientado por médicos fisiatras e suporte de equipe multidisciplinar (neurologistas, neurocirurgiões. ortopedistas. urologistas, psiquiatras. cirurgiões plásticos. psicólogos, enfermeiros, fisioterapeutas, terapeutas ocupacionais, etc), preferencialmente em centros de referência (especializados) para reabilitação. Se houver uma doenca ativa relacionada com a espasticidade, a mesma deve ser tratada²⁰, seguida de estabilização clínica do doente, resolução das condições relacionadas à progressão e agravamento da espasticidade (tratamento de inflamação ou infecção), resolução das disfunções viscerais, obstipação, tratamento das escaras, cicatrizes e unhas encravadas, redução dos estímulos dolorosos e de outros estímulos sensitivos estimulantes e o controle dos estresses psicológicos e de outras anormalidades psíquicas e comportamentais dos doentes7,21. A própria espasticidade pode funcionar como um fator de piora dela mesma.

Os medicamentos mais utilizados na atualidade para tratar a espasticidade (Quadro 1) consistem principalmente em miorrelaxantes de diferentes classes, sendo o baclofeno a medicação de escolha para o tratamento inicial tanto em crianças como em adultos ²². O tratamento da disreflexia neurovegetativa é feito com nitratos, antihipertensivos, bloqueadores de canais de cálcio (como nifedipina) e antagonistas adrenérgicos alfa (prazocina) ou beta (propranolol)^{23,24}.

O tratamento intervencionista da espasticidade se dá com uso de agentes neurolíticos (como fenol ou álcool) ou aplicação de toxina botulínica tipo A. A infiltração dos pontos motores musculares ou dos nervos com agentes neurolíticos como o fenol a 3 a 7%, álcool a 50 a 100% ou toxina botulínica

pode ser necessária em muitos doentes, pois a neurólise reduz os reflexos tônicos de estiramento rapidamente, porém, de forma fugaz^{21,25,26}. A inieção de anestésico local antes da inieção de fenol ou álcool é recomendável para evitarse a dor em queimor durante o procedimento. A neurólise química é realizada em nervos motores em pacientes com sensibilidade preservada ou nervos mistos em pacientes com lesão medular completa. Pode haver necessidade de sedação ou aplicações de anestésicos locais topicamente durante a injeção em crianças. As infiltrações habitualmente são empregadas para prever os resultados da neurectomia ou da rizotomia e podem. adicionalmente, melhorar a dor. A utilização de métodos complementares nos procedimentos, como eletroneuromiografia, eletroestimulação e uso de ultrassonografia podem otimizar os resultados obtidos, ou mesmo diminuir o volume a ser injetado com mesma eficácia^{27,28}. A aplicação de toxina botulínica é um dos tratamentos mais utilizados para a espasticidade, apesar da curta duração de seus efeitos, já que pode ser repetido e apresenta baixo risco de complicações²⁹.

A neurocirurgia funcional deve ser considerada quando a espasticidade exagerada não for controlada com essas medidas. Devem reduzir a hipertonia sem comprometer a atividade física, o tono muscular útil e as funções sensitivas residuais. Quando há preservação da movimentação voluntária, tais procedimentos visam a readequar a harmonia das atividades entre os músculos agonistas e paréticos e os antagonistas espásticos e, quando a motricidade voluntária está muito comprometida ou ausente, visam prevenir a instalação de deformidades ortopédicas e escaras. Os métodos operatórios podem ser aplicados em casos de hipertonia generalizada ou localizada e seus efeitos podem ser temporários ou permanentes. Incluem os procedimentos realizados nos nervos periféricos, nas raízes nervosas, na medula espinal ou no encéfalo³⁰.

TRATAMENTO NEUROCIRÚRGICO

Infusão intratecal de fármacos

A infusão prolongada de baclofeno (mais comumente). ou menos frequentemente de morfina, midazolam, clonidina e/ou bupivacaína por via intratecal otimiza a eficácia relativa dessas medicações, diminuindo seus efeitos adversos sistêmicos e potencializando sua ação junto ao sistema nervoso central. Penn (1984)31 foi o pioneiro na infusão de baclofeno via intratecal para tratar doentes com espasticidade. O implante de bomba de infusão intratecal deve ser precedido de um teste para aferir resultados futuros e a reações aos medicamentos. No teste de baclofeno intratecal, deve-se inicialmente injetar bolus inicial de 1 mcg/ Kg em crianças pequenas, até 50 a 150 mcg em adultos, diretamente no compartimento liquórico. Altas doses de baclofeno intratecal podem levar à intoxicação, caracterizada por tonturas, confusão mental, depressão respiratória, hipotensão arterial, espirros, fraqueza muscular, ansiedade, etc, que pode ser tratada com a administração de 1 a 2 mg de prostigmina por VO, retirada do medicamento da bomba e remoção de 30 a 50 ml de LCR, se necessário. A injeção intratecal de baclofeno é indicada para tratar a espasticidade de doentes paraplégicos ou tetraplégicos especialmente de origem medular, adultos com espasticidade difusa ou crianças com paralisia cerebral (principalmente GMFCS IV e V). Yaksh 32 (1981) observou que a morfina administrada por via intratecal também induz relaxamento muscular, pois inibe a aferência do sistema fusimotor gama e a hiperexcitabilidade multisináptica interneuronal^{33,34}. O método de infusão de fármacos intratecal é neuromodulário, e apresenta reversibilidade e possibilidade de resgate dos efeitos. O alto custo, a necessidade de recargas periódicas e de reprogramações são limitações para seu uso, principalmente para pacientes que residem longe do centro de tratamento.

Estimulação elétrica da medula espinal

Foi introduzida em 1973 para tratar doentes com espasticidade. Entretanto, os resultados da intervenção não foram convincentes e o método não é rotineiramente aplicado para esse fim³⁵⁻³⁷.

Procedimentos neuroabalativos

Representados pelas neurotomias periféricas totais ou seletivas, injeção de neurolíticos por via intratecal, rizotomias percutâneas ou a céu aberto, lesão do trato de Lissauer e do corno posterior da substância cinzenta da medula espinal, mielotomias e dentatotomia cerebelar.

Neurotomias periféricas seletivas

Indicadas para tratar a espasticidade localizada e que afeta poucos grupamentos musculares. Podem ser realizadas percutâneamente ou a céu aberto. Foram introduzidas para o tratamento da deformidade do pé espástico por Stoffel³⁷, em 1912. e Gros et al.9 desenvolveram o método microcirúrgico para sua realização em 1972. Em 1985, Sindou et al.39 desenvolveram o método de eletroestimulação e microdissecação para interromper somente as fibras motoras relacionadas à espasticidade sem comprometer a atividade motora, a sensibilidade ou causar amiotrofia. É recomendado realização de bloqueio anterior à ablação, como preditor da cirurgia. Os ramos motores devem ser isolados dos troncos ou fascículos nervosos na extensão de alguns centímetros e estimulados com correntes elétricas com 1 mA ou 0,5V e 2 a 5Hz. É realizada secção de 50 a 80% dos ramos nervosos com subtração de 5 mm para interromper o arco reflexo segmentar. Deve-se evitar a secção de fibras sensitivas para evitar disestesia e dor neuropática³⁹.

A neurotomia dos nervos obturatores é utilizada para tratar a espasticidade dos músculos adutores das coxas. O ramo posterior deve ser poupado para preservar músculos estabilizadores do quadril, é um procedimento utilizado para melhora do padrão da espasticidade em tesoura em membros inferiores^{40–42}. A neurotomia dos músculos

isquiotibiais é indicada para tratar a espasticidade que se manifesta em crianças diplégicas e a prevenir ou evitar a progresssão da deformidade em flexão dos joelhos durante o crescimento⁴².

A neurotomia do nervo tibial é indicada para tratar a espasticidade que causa o pé-varo ou equino-varo com flexão dos dedos. As aferências para o músculo sóleo devem ser prioritariamente seccionadas, pois ele é o responsável pela patogênese da queda do pé espástico⁴². A neurotomia do nervo fibular é indicada para tratar a hipertonia em hiperextensão do hálux⁴².

Para membros superiores, a neurotomia do nervo mediano é indicada para tratar a espasticidade da mão em pronação^{42,43}. A neurotomia do nervo ulnar é indicada para tratar a espasticidade do punho em flexão e em desvio ulnar; a neurotomia ulnar na mão é indicada para tratar a espasticidade em flexão dos dedos, dependente do músculo flexor digitorum profondus, assim como, para tratar a espasticidade em adução e ou flexão dependente do músculo adutor do polegar combinadamente com a neurotomia do nervo mediano^{42,43}.

A neurotomia do músculo cutâneo é eficaz no tratamento da espasticidade resultando em flexão isolada do cotovelo⁴². As neurotomias dos nervos mediano e ulnar são eficazes no tratamento da espasticidade distal dos membros superiores, resultando em hiperflexão dos dedos e do punho^{42,43}. A neurotomia dos nervos relacionados aos músculos rotadores externos do ombro proporcionou melhora da espasticidade e da amplitude dos movimentos dos ombros⁴².

As neurotomias proporcionam mais relaxamento muscular que as infiltrações com toxina botulínica⁴⁴. As complicações pós-operatórias mais comuns são a ocorrência de hematomas e infecção, mas são raros.

RIZOTOMIAS

Rizotomia anterior (motora)

Munro^{45,46}, em 1945, pela primeira vez submeteu 42 doentes com espasticidade intensa acometendo os membros inferiores à rizotomia anterior bilateral de T11 a S1. O procedimento consistiu da execução de laminectomia seguida da secção das raízes anteriores. Os resultados são bons quanto à resolução da espasticidade, mas o procedimento implica em se desnervar irreversivelmente os músculos que, além de prejudicar o processo de recuperação motora, pode gerar alterações tróficas e escaras^{46,47}.

Rizotomia dorsal (sensitiva)

Foi desenvolvida por Foerster⁴⁸, em 1908, para tratamento da espasticidade. Tem a finalidade de reduzir as aferências facilitatórias exteroceptivas e proprioceptivas, especialmente as oriundas dos fusos musculares que mantêm ou agravam a espasticidade, sem alterar o trofismo muscular e ou comprometer a possibilidade de recuperação da motricidade voluntária. Foerster realizou rizotomias sensitivas de L2 a S1 e preservou somente a raiz L4 de 157 doentes, sendo 88 crianças com paralisia cerebral e observou que ocorreu redução marcante da espasticidade, à custa de intensa hipotonia e ataxia. Realizou também, a secção das raízes posteriores de C4 a T2 poupando a raiz C6 para tratar doentes com espasticidade dos membros superiores. Gros observou que ocorreram menos complicações quando preservou 20% das radículas, recomendando a preservação da inervação dos músculos responsáveis pelo tono útil (músculos quadríceps, abdominais e glúteos músculos) em crianças com espasticidade dos membros inferiores⁴⁹. Em 1977, Fraioli e Guidetti⁵⁰ desenvolveram a técnica da rizotomia sensitiva parcial que consistia em seccionar as radículas alguns milímetros antes de sua penetração no sulco dorsolateral. Em 1976, Fasano et al.51,52 descreveram a rizotomia sensitiva funcional, baseada na estimulação

bipolar intraoperatória das radículas posteriores concomitantemente à observação das respostas clínicas e eletromiográficas. O procedimento proporcionou melhora significativa da espasticidade sem comprometimento importante da propriocepção ou da sensibilidade. Peacock e Arens⁵³, em 1982, descreveram uma série de pacientes operados com a técnica de rizotomia junto ao forame de conjugação, conforme a técnica descrita por Fasano⁵².

As rizotomias a céu aberto consistem da execução de laminectomias ou laminotomias, sob anestesia geral, idealmente sem uso de relaxantes musculares. Com o auxílio do microscópio cirúrgico, deve-se abrir a dura-máter para a exposição das raízes sensitivas, estimular suas radículas e, de acordo com a evocação das contrações musculares que induzem evidenciadas com a inspeção da musculatura a ser tratada e/ou com métodos eletromiográficos, seccionar aquelas mais relacionadas ao arco reflexo em questão, conforme sugerido por Fasano⁵¹. Aproximadamente 50 a 70% das radículas de uma raiz espinal podem ser sacrificadas sem adicionar déficits sensitivos significativos.

Em doentes com lesão medular completa os resultados são melhores quando se seccionam 60% a 80% das raízes sensitivas. Kottke⁵⁴, em 1970, e Heimburger et al.55 (1973) recomendaram as rizotomias sensitivas de C1 a C3 para proporcionar redução da espasticidade do membro superior ao reduzir os reflexos tônicos cervicais, poupando a raiz C4 para não comprometer a função do diafragma e as raízes C5 a T1 para não alterar a sensibilidade do membro superior. Bertelli et al.56 descreveram a rizotomia dorsal seletiva na altura do plexo braguial para melhora de espasticidade em membros superiores. Wen-Dong et al.57 (2011) descreveram a técnica de secção da raiz C7 e reinervação do tronco médio do plexo braquial do lado acometido com a raiz correspondente contralateral para tratar a espasticidade em flexão da mão e do dos dedos de crianças com paralisia cerebral.

Sindou et al.58 (1980) observaram que

os resultados foram excelentes em 12 de 15 doentes com espasticidade grave decorrente de esclerose múltipla. De acordo com a meta-análise por McLaughlin et al. 59 (1998), quanto maior a percentagem de radículas seccionadas, maiores os ganhos nas pontuações da escala GMFM. Em dois ensaios clínicos randomizados, observou-se que a rizotomia acompanhada de fisioterapia intensa foi mais eficaz do que apenas a fisioterapia em relação às pontuações do GMFM60,61. Em recente estudo realizado em pacientes com PC GMFCS I, II e III, o resultado confirmou a melhora funcional e em qualidade de vida, além de ser um procedimento custo-efetivo se comparado com o tratamento de crianças não operadas, levando assim o governo britânico a subsidiar o procedimento em seu sistema de saúde^{62,63}

As melhoras promovidas pela rizotomia dorsal seletiva não se restrigem apenas à liberação da espasticidade em membros superiores, havendo inúmeros relatos de melhoras adicionais em membros superiores, bexiga, deglutição, fala, cognição entre outros^{6,60,64-66}. Salame et al.⁶⁵ (2002) observaram melhora da espasticidade dos membros inferiores em todos os doentes submetidos à secção de 50% das radículas sensitivas lombares e sacrais e melhora da amplitude do movimento em 80% dos casos, da marcha em 76% da capacidade de deambular em 20%, da bexiga espástica em 42%, da espasticidade dos membros superiores em 57% e da fala e da cognição em 47% em um ano de acompanhamento; ocorreu hipoestesia temporária em 12 doentes, sendo permanente em quatro, incontinência urinária temporária em seis, infecção da parede cirúrgica em cinco e amiotrofia em dois. Cole et al. 66 (2007) trataram 19 crianças com espasticidade decorrente de paralisia cerebral com rizotomia lombar seletiva e observaram melhoria do exame clínico, da cosmese, dos parâmetros temporais, da cinética e cinemática da marcha e da pontuação na escala GMFM. Oki et al. 67 (2010) trataram treze crianças com hemiparesia espástica com espasticidade com rizotomia lombossacral e observaram redução do tono dos adutores das coxas, flexores e extensores

do joelho e flexores plantares do tornozelo, melhora que se manteve durante dois anos do comprimento da passada e da qualidade e velocidade da marcha.

As crianças tratadas com rizotomia dorsal seletiva tiveram melhor necessidade de realização de cirurgias ortopédicas quando comparadas com crianças não-operadas⁶⁸. Usualmente, durante o período pós-operatório, ocorre alguma recidiva da espasticidade devido à reorganização sináptica na substância cinzenta da medula espinal⁶⁹. Portanto, a rizotomia sensitiva seletiva é tratamento eficaz em crianças com paralisia cerebral diplégica espástica e proporciona melhora da força global, velocidade e cinemática da marcha nestes casos, além de ser procedimento custo-efetivo e seguro.

O procedimento deve ser seguido de programa intensivo de fisioterapia visando a remobilizar a criança e melhorar sua força. Há manutenção da redução da espasticidade na maioria das crianças com paralisia cerebral em longo prazo70, mas até 27% delas necessita de medicamentos antiespásticos. procedimentos neurolíticos periféricos ou infiltrações com toxina botulínica complementarmente⁶⁹. Pacientes submetidos a rizotomia dorsal seletiva apresentam melhora na marcha, mesmo em seguimento de longo prazo⁷¹, podendo apresentar ganho no GMFCS em até 58% dos operados; assim como ocorre um ganho de força muscular para a marcha, relacionado com a melhora da espasticidade72.

Rizotomias percutâneas (não seletivas)

Foram desenvolvidas por Uematsu^{73,74}, em 1974, para tratar doentes paraplégicos com lesão medular completa e crises de espasmos ou para debilitados sem condições de se submeter a procedimentos a céu aberto⁷⁵. A rizotomia percutânea por radiofrequência também se revelou eficaz no tratamento da hiperreflexia do músculo detrusor da bexiga neurogênica⁷⁶. Consiste da introdução percutânea com auxílio de radioscopia de um eletrodo em raiz sacral, seguida de estimulação elétrica e de termocoagulação a 85° C durante

90 s com radiofrequência. Sua eficácia aguda é semelhante à da rizotomia a céu aberto, mas as anormalidades sensitivas induzidas são maiores. assim como pode ocorrer recidiva após alguns meses ou anos. Turnbull⁷⁵ (1983) tratou a espasticidade de 21 doentes paraplégicos com rizotomia espinal percutânea e observou melhora imediata em 19, havendo manutenção prolongada da melhora em seis e durante período de acompanhamento durante sete a 18 meses; em quatro de seis doentes em que havia alguma sensibilidade preservada. ocorreu agravamento da hipoestesia pré-operatória. Atualmente o método é sugerido como opção para pacientes com lesão medular completa (Frankel A). podendo o procedimento ser repetido em caso de recidiva.

Vles *et al.*⁷⁷ (2010) trataram 17 crianças com espasticidade decorrente de paralisia cerebral (todas GMFCS V) com rizotomias lombares percutâneas com rediofrequência sobre o gânglio da raiz dorsal e observaram melhora da espasticidade e da dor, mas ausência de melhora na escala GMFM.

Rizotomias químicas

Raramente são utilizadas atualmente. Consistiam na injeção de soluções hipobáricas, como o álcool78,79 ou hiperbáricas, como o fenol a 5 até 20%80, em glicerina81, no compartimento intratecal. É necessário adotar posições estratégicas para correto escorrimento da medicação, guiada por marcador e radioscopia. Não são realizadas frequentemente porque é difícil dirigir o agente lítico para as raízes envolvidas na espasticidade. Além disso, a neurólise não é seletiva para lisar as fibras relacionadas ao controle do tono muscular do que resultam complicações quanto às funções motoras e esfincterianas (quase sempre há perda do controle vesical). Além destas complicações, cefaleia e disestesias podem decorrer do procedimento⁸¹.

Lesão do trato de Lissauer do corno posterior da substância cinzenta da

medula espinal (LTLCPME)

A LTLCPME (popularmente chamada de "DREZ") foi descrita em 1972 por Sindou82 para tratar a espasticidade do membro superior de doentes hemiplégicos83 ou com espasticidade dos membros inferiores de doentes paraplégicos³⁹ especialmente quando acamados como resultado dos espasmos em flexão ou com dor rebelde e a bexiga neurogênica espástica¹¹. Várias são as razões que sugerem que a LTLCPME seja eficaz no tratamento da espasticidade e da bexiga espástica84 e permita que doentes com deficiência grave possam sentar e deitar confortavelmente com melhora na qualidade de vida. A LTLCPME visa a interromper preferencialmente as fibras finas nociceptivas e as fibras miotáticas calibrosas presentes nas raízes sensitivas e localizadas lateralmente no local de sua penetração na medula espinal, assim como grande contingente do corno posterior da substância cinzenta da medula espinal onde se alojam os circuitos interneuronais que ativam os neurônios envolvidos na espasticidade³⁹. A lesão do componente medial do trato de Lissauer reduz a excitabilidade neuronal regional veiculada pelos aferentes nociceptivos e das fibras recorrentes85. A LTLCPME consiste em se realizar, sob anestesia geral sem bloqueio neuromuscular ou uso de miorrelaxantes, uma laminectomia ou laminotomia visando a expor o local de penetração na medula espinal das raízes nervosas correspondentes aos segmentos espinais C5 a T1 em casos de espasticidade do membro superior e L2 a S2 em casos de acometimento do membro inferior. que processam o fenômeno espástico. A seguir, com o auxílio do microscópio cirúrgico, realiza-se a estimulação elétrica bipolar das raízes sensitivas visando induzir respostas motoras para, a seguir, realizar-se lesões na zona de entrada da raiz dos segmentos correspondentes, ou por radiofreguência com eletrodo específico para isso, ultrassom, laser, bisturi ou pinça bipolar, angulados a 25 a 45° medial e ventralmente, a lesões seriadas no sulco colateral posterior até a profundidade de 2 a 3 mm no CPME, de modo a lesar as fibras excitatórias do trato de Lissauer e a preservar as inibitórias⁸⁵. A monitorização eletrofisiológica com o registro dos potenciais evocados somatossensitivos pode ser útil para identificar os segmentos da medula espinal a serem tratados⁸⁶, assim como a utilização de ultrassonografia intraoperatória⁸⁷.

Após a cirurgia ablativa na zona de entrada da raiz dorsal, há significativa ou eliminação da espasticidade e espasmos em 75 e 88% dos doentes, respectivamente, e da dor sem abolição da sensibilidade em 91,6%; durante o periodo pós-operatório com duração média de três anos39. Sindou⁸³ (1986) tratou 16 doentes hemiplégicos com LTLCPME de um membro superior e observou que houve melhora discreta em dois, melhora acentuada em nove e abolição total da espasticidade em cinco. Após a operação, tornou-se possível melhorar os movimentos voluntários em oito doentes e, pelo menos, adquirir boa mobilização passiva em sete. A bexiga hiperativa de doentes que se submetem à LTLCPME de L2 a S1 bilateral para tratar a espasticidade dos membros inferiores pode também beneficiar-se com o prolongamento da cirurgia para os segmentos sacrais S2, S3 e S488.

Mielotomia

Procedimento raramente indicado atualmente, geralmente para pacientes com lesão medular completa que foram refratários a outros tipos de tratamento. McCarty89 (1954) observou que a mielotomia seletiva resultava em comprometimento permanente das funções da medula espinhal e em abolição das atividades reflexas da bexiga, intestino e ereção; devendo ser indicada apenas abaixo do nível em lesões medulares completas. A mielomia lateral longitudinal desenvolvida por Bischof⁹⁰, em 1951, visava interromper as conexões entre o trato corticoespinhal e os motoneurônios sem comprometer a função motora e sensitiva residual em doentes com lesões incompletas. A mielotomia pode ser repetida quando há espasmos ou contraturas articulares graves^{91,92}.

Dentatomomia cerebelar

núcleo denteado está envolvido no planejamento da sequência de movimentos, e já foi alvo de cirurgias ablativas para tratamento de espasticidade, e ainda é alvo de investigação sobre procedimentos neuromodulatórios 93,94. Sua destruição altera o tono muscular e a postura animais descerebrados⁹⁵. O maior efeito da dentatomia é a redução da espasticidade ipsilateral⁹⁵⁻⁹⁷. Em 1960, Hassler et al.⁹⁸ (1960) realizaram a primeira destruição estereotáxica do núcleo fastigial e observaram melhora temporária da da espasticidade do tronco em um doente com paralisia cerebral, efeito que se manteve durante um ano. Em 1963, Heimburger e Whitlock realizaram a primeira dentatomia estereotáctica⁹⁶. Ocorre melhora do controle motor voluntário e da coordenação dos movimentos em 50% dos casos, assim como da violência e frequência dos movimentos involuntários e coreiformes. Em 2/3 dos pacientes ocorreu redução dos movimentos anormais de torção axial e discinesias faciais geralmente contralateralmente⁹⁶. Nashold e Slaughter (1969) 99 observaram melhora do tono ipsilateral a dentatotomia medial e lesão do núcleo interpositus. O efeito ipsilateral foi mais evidente da operação e também ocorre houve pouco efeito contralateral. Heimburger¹⁰⁰ (1970) tratou 61 doentes, e observou que 50 usufruíram melhora, com duração de 4 a 60 meses, durante os quais, ocorreu recorrência em onze. Concluiu que a melhora foi mais significativa em casos de paralisia cerebral, espasticidade movimentos coreoatetóticos. Guidetti e Fraioli⁸⁴ (1977) trataram 47 doentes submetidos à dentatotomia lateral e intermediária e observaram que ocorreu melhora em cinco de sete doentes com hemiplegia espástica infantil e em sete de onze casos de diplegia espástica. Os resultados foram melhores quando as lesões foram alocadas nas regiões dorsolateral, ventrolateral e intermediária do núcleo denteado e quando as operações foram bilaterais. Mundinger e Ostertag¹⁰¹ (1977) observaram que as tálamo-subtalamotomias combinadas com as dentatotomias em doentes

com espasticidade associada às discinesias proporcionou resultados melhores do que apenas as dentatotomias. Siegfried e Verdie¹⁰² (1977) trataram 50 doentes com dentatotomia ventrolateral, sendo que em 42 dos quais apresentavam síndrome espástica resultante da paralisia cerebral, com 109 dentatotomias, sendo 41 bilaterais e observaram que ocorreu melhora da espasticidade em 44% dos casos em acompanhamento em longo prazo, assim como em 28% dos pacientes com atetose e em 75% com coreoatetose.

REFERÊNCIAS

- 1. Lance J. Symposium synopsis. In: Feldman RG, Young RR, Koella WP, CIBA-GEIGY Corporation, eds. Spasticity, disordered motor control. Miami, FL; Chicago: Symposia Specialists; 1980.
- 2. Elbasiouny SM, Moroz D, Bakr MM, Mushahwar VK. Management of spasticity after spinal cord injury: current techniques and future directions. Neurorehabil Neural Repair. 2010;24(1):23-33.
- 3. Martin A, Abogunrin S, Kurth H, Dinet J. Epidemiological, humanistic, and economic burden of illness of lower limb spasticity in adults: a systematic review. Neuropsychiatr Dis Treat. 2014;10:111-122.
- 4. Ranatunga KW. Skeletal muscle stiffness and contracture in children with spastic cerebral palsy. J Physiol. 2011;589(11):2665.
- 5. Ghai A, Garg N, Hooda S, Gupta T. Spasticity Pathogenesis, prevention and treatment strategies. Saudi J Anaesth. 2013;7(4):453.
- 6. Tilton A. Management of Spasticity in Children With Cerebral Palsy. Semin Pediatr Neurol. 2009;16(2):82–89.
- 7. Behari M. Spasticity. Neurol India. 2002;50(3):235.
- 8. Davis R. Spasticity following spinal cord injury. Clin Orthop. 1975;(112):66–75.
- 9. Gros C. Spasticity-Clinical Classification and Surgical Treatment. In: Krayenbühl H, Brihaye J, Loew F, *et al.*, eds. Advances and Technical Standards in Neurosurgery. Vienna: Springer; 1979. p. 55–97.
- Penn RD. History and Current Neurosurgical Management of Spasticity. In: Lozano AM, Gildenberg PL, Tasker RR, eds. Textbook of Stereotactic and Functional Neurosurgery. Berlin, Heidelberg: Springer; 2009. p. 1925–1933.
- 11. Beneton C. The spastic bladder and its treatment. In: Sindou MP, Abbott IR, Keravel Y, eds. Neurosurgery for Spasticity: A Multidisciplinary Approach. Wien: Springer-Verlag; 1991.

Droga	Dose inicial	Dose máxima (dia)	Doses/dia	Crianças
Dantrolene	25 mg	400 mg	4	3 mg /kg/dia
Baclofeno (VO)	5 mg	80 mg	4	40 mg (2 a 7 anos) 60 mg (8 a 11 anos) 80 mg (12 anos ou mais)
Diazepam	5 mg	60 mg	3 a 4	0,8 mg /kg/dia
Clorazepato	7,5 mg	90 mg	2 a 3	0,3 mg /kg/dia
Cetazolam	15 mg	270 mg	1	NA
Clonazepam	0,5 mg	20 mg	2 a 3	20 mg /dia
Piracetam	2,4 g/dia	12 g	2 a 3	3,2 g/dia
Progabida	14,3 mg /kg/dia	45 mg /kg/dia	3	NA
Tizanidina	2 mg	36 mg	3 a 4	NA
Clonidina	50 mcg	2,4 mg	2 a 4	3 mcg/Kg/dia
Ciproheptadina	4 mg	36 mg	3	0,5 mg /kg
Timoxamina	0,1 mg /kg/dia (IV) 40 mg (VO)	900 mg (VO)	1	NA
Orphenadrina	60 mg	200 mg	2	NA
Ciclobenzaprina	5 mg	40 mg	3	5-30 mg
THC/CBD	2,7/2,5 mg	32,4/30 mg	3	2,7/2,5 mg
Toxina Botulínica A	100U	400U	Cada 12 sem	50U
Ziclague (Spray cutâneo)	3,5 mg	21 mg	1	3,5 mg
Fenotiazinas (Clorpromazina)	1 mg	1600 mg	1 a 6	1 mg
Carisoprodol	125 mg	1,4g	1 a 4	125 mg (16 anos)
Gabapentina	300 mg	3,6g	3	25-35 mg /Kg/dia
Baclofeno (intratecal)	25 mcg	1000 mcg	Contínuo	700 mcg/dia
Morfina (Intratecal)	5 mcg/Kg/dia	10 mg /dia	Contínuo	3-5 mcg/Kg/dia

Quadro 1: Quadro com as principais medicações utilizadas no tratamento da espasticidade.

Fonte: Os autores, 2021.

- 12. Madersbacher H. The various types of neurogenic bladder dysfunction: an update of current therapeutic concepts. Spinal Cord. 1990;28(4):217–229.
- 13. Pierson SH. Outcome measures in spasticity management. Muscle Nerve Suppl. 1997;6:S36-60.
- 14. Hodgkinson I, Vadot J-P, Bérard C. [Clinical assessment of spasticity in children]. Neurochirurgie. 2003;49(2-3):199–204.
- 15. Eliasson AC, Krumlinde-Sundholm L, Rösblad B, et al. The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48(7):549-554.
- 16. Beckung E, Hagberg G. Neuroimpairments, activity limitations, and participation restrictions in children with cerebral palsy. Dev Med Child Neurol. 2002;44(5):309–316.
- 17. Joanna M, Magdalena S, Katarzyna BM, Daniel S, Ewa LD. The Utility of Gait Deviation Index (GDI) and Gait Variability Index (GVI) in Detecting Gait Changes in Spastic Hemiplegic Cerebral Palsy Children Using Ankle-Foot Orthoses (AFO). Children (Basel). 2020;7(10):149.
- 18. Armand S, Decoulon G, Bonnefoy-Mazure A. Gait analysis in children with cerebral palsy. EFORT Open Rev. 2016;1(12):448–460.
- 19. Ghorbani S, Mahdaviani K, Thaler A, *et al.* MoVi: A large multi-purpose human motion and video dataset. PloS One. 2021;16(6):e0253157.
- 20. Chatley A, Jaiswal AK, Jain M, Behari S. Congenital irreducible atlantoaxial dislocation associated with cervical intramedullary astrocytoma causing progressive spastic quadriparesis. Neurol India. 2008;56(4):477–479.
- 21. Khot A, Sloan S, Desai S, Harvey A, Wolfe R, Graham HK. Adductor release and chemodenervation in children with cerebral palsy: a pilot study in 16 children. J Child Orthop. 2008;2(4):293–299.
- 22. Delgado MR, Hirtz D, Aisen M, et al. Practice Parameter: Pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review). Neurology. 2010;74(4):336–343.
- 23. Rabchevsky AG, Kitzman PH. Latest Approaches for the Treatment of Spasticity and Autonomic Dysreflexia in Chronic Spinal Cord Injury. Neurotherapeutics. 2011;8(2):274–282.
- 24. Pranzatelli MR, Pavlakis SG, Gould RJ, De Vivo DC. Hypothalamic-midbrain dysregulation syndrome: hypertension, hyperthermia, hyperventilation, and decerebration. J Child Neurol. 1991;6(2):115–122.
- 25. Simon O, Yelnik AP. Managing spasticity with drugs. Eur J Phys Rehabil Med. 2010;46(3):401–410.
- 26. Ozcakir S, Sivrioglu K. Botulinum toxin in poststroke spasticity. Clin Med Res. 2007;5(2):132–138.
- 27. Matsumoto ME, Berry J, Yung H, Matsumoto M, Munin MC. Comparing Electrical Stimulation With and Without Ultrasound Guidance for Phenol Neurolysis to the Musculocutaneous Nerve. PM R. 2018;10(4):357–364.

- 28. Chang MC, Boudier-Revéret M. Management of elbow flexor spasticity with ultrasound-guided alcohol neurolysis of the musculocutaneous nerve. Acta Neurol Belg. 2020;120(4):983–984.
- 29. Lukban MB, Rosales RL, Dressler D. Effectiveness of botulinum toxin A for upper and lower limb spasticity in children with cerebral palsy: a summary of evidence. J Neural Transm Vienna Austria 1996. 2009;116(3):319–331.
- 30. Simpson RKJ, Leis AA. Neurosurgical Management of Spasticity Part I: Evaluation and Medical Management. Contemp Neurosurg. 1995;17(19):1–6.
- 31. Penn RD, Kroin JS. Intrathecal baclofen alleviates spinal cord spasticity. Lancet Lond Engl. 1984;1(8385):1078.
- 32. Yaksh TL, Reddy SV. Studies in the primate on the analgetic effects associated with intrathecal actions of opiates, alpha-adrenergic agonists and baclofen. Anesthesiology. 1981;54(6):451–467.
- 33. Erickson DL, Lo J, Michaelson M. Control of intractable spasticity with intrathecal morphine sulfate. Neurosurgery. 1989;24(2):236-238.
- 34. Rogano LA, Greve JM, Teixeira MJ. Use of intrathecal morphine infusion for spasticity. Arq Neuropsiquiatr. 2004;62(2):403–405.
- 35. Dimitrijevic MM, Dimitrijevic MR, Illis LS, Nakajima K, Sharkey PC, Sherwood AM. Spinal cord stimulation for the control of spasticity in patients with chronic spinal cord injury: I. Clinical observations. Cent Nerv Syst Trauma J Am Paralys Assoc. 1986;3(2):129–144.
- 36. Dimitrijevic MR, Illis LS, Nakajima K, Sharkey PC, Sherwood AM. Spinal cord stimulation for the control of spasticity in patients with chronic spinal cord injury: II. Neurophysiologic observations. Cent Nerv Syst Trauma J Am Paralys Assoc. 1986;3(2):145–152.
- 37. Nagel SJ, Wilson S, Johnson MD, *et al.* Spinal Cord Stimulation for Spasticity: Historical Approaches, Current Status, and Future Directions. Neuromodulation J Int Neuromodulation Soc. 2017;20(4):307–321.
- 38. Stoffel A. The treatment of spastic contractures. Am J Orthop Surg. 1912;10:611–644.
- 39. Sindou M, Abdennebi B, Sharkey P. Microsurgical selective procedures in peripheral nerves and the posterior root-spinal cord junction for spasticity. Appl Neurophysiol. 1985;48(1–6):97–104.
- 40. Ren S, Liu W, Wang L, Guo C, Pang Q. Utilization of electromyography during selective obturator neurotomy to treat spastic cerebral palsy accompanied by scissors gait. J Integr Neurosci. 2019;18(3):305–308.
- 41. Sitthinamsuwan B, Chanvanitkulchai K, Phonwijit L, Nunta-Aree S, Kumthornthip W, Ploypetch T. Improvement of sitting ability and ambulation status after selective peripheral neurotomy of the sciatic hamstring nerve together with obturator branches for severe spasticity of the lower extremities. Stereotact Funct Neurosurg. 2012;90(5):335–343.
- 42. Sindou MP, Simon F, Mertens P, Decq P. Selective peripheral neurotomy (SPN) for spasticity in childhood. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg. 2007;23(9):957–970.

- 43. Puligopu AK, Purohit AK. Outcome of selective motor fasciculotomy in the treatment of upper limb spasticity. J Pediatr Neurosci. outubro de 2011;6(1):S118-125.
- 44. Bollens B, Gustin T, Stoquart G, Detrembleur C, Lejeune T, Deltombe T. A randomized controlled trial of selective neurotomy versus botulinum toxin for spastic equinovarus foot after stroke. Neurorehabil Neural Repair. 2013;27(8):695–703.
- 45. MUNRO D. The rehabilitation of patients totally paralyzed below the waist, with special reference to making them ambulatory and capable of earning their own living. V. An end-result study of 445 cases. N Engl J Med. 1954;250(1):4-14.
- 46. Munro D. The rehabilitation of patients totally paralyzed below the waist, with special reference to making them ambulatory and capable of earning their living. N Engl J Med. 1947;236(7):223-235.
- 47. Freeman LW, Heimburger RF. The surgical relief of spasticity in paraplegic patients: anterior rhizotomy. J Neurosurg. 1947;4(5):435–443.
- 48. Foerster. Resection of the posterior nerve roots of spinal cord. The Lancet. 1911;178(4584):76–79.
- 49. Privat JM, Benezech J, Frerebeau P, Gros C. Sectorial posterior rhizotomy, a new technique of surgical treatment for spasticity. Acta Neurochir (Wien). 1976;35(1):181–195.
- 50. Fraioli B, Guidetti B. Posterior partial rootlet section in the treatment of spasticity. J Neurosurg. 1977;46(5):618–626.
- 51. Fasano VA, Barolat-Romana G, Zeme S, Squazzi A. Electrophysiological assessment of spinal circuits in spasticity by direct dorsal root stimulation. Neurosurgery. 1979;4(2):146–151.
- 52. Fasano VA, Broggi G, Barolat-Romana G, Sguazzi A. Surgical treatment of spasticity in cerebral palsy. Childs Brain. 1978;4(5):289–305.
- 53. Peacock WJ, Arens LJ. Selective posterior rhizotomy for the relief of spasticity in cerebral palsy. South Afr Med J Suid-Afr Tydskr Vir Geneeskd. 1982;62(4):119–24.
- 54. Kottke FJ. Modification of Athetosis by Denervation of Tonic Neck Reflexes. Developmental Medicine and Child Neurology. 1970;12:236.
- 55. Heimburger RF, Slominski A, Griswold P. Cervical posterior rhizotomy for reducing spasticity in cerebral palsy. J Neurosurg. 1973;39(1):30–34.
- 56. Bertelli JA, Ghizoni MF, Frasson TR, Borges KSF. Brachial plexus dorsal rhizotomy in hemiplegic cerebral palsy. Hand Clin. 2003;19(4):687–699.
- 57. Xu W-D, Hua X-Y, Zheng M-X, Xu J-G, Gu Y-D. Contralateral C7 nerve root transfer in treatment of cerebral palsy in a child: case report. Microsurgery. 2011;31(5):404–408.
- 58. Sindou M, Millet MF, Mortamais J, Eyssette M. Results of selective posterior rhizotomy in the treatment of painful and spastic paraplegia secondary to multiple sclerosis. Appl Neurophysiol. 1982;45(3):335–340.

- 59. McLaughlin JF, Bjornson KF, Astley SJ, *et al.* Selective dorsal rhizotomy: efficacy and safety in an investigator-masked randomized clinical trial. Dev Med Child Neurol. 1998;40(4):220–232.
- 60. McLaughlin J, Bjornson K, Temkin N, *et al.* Selective dorsal rhizotomy: meta-analysis of three randomized controlled trials. Dev Med Child Neurol. 2002;44(1):17–25.
- 61. Wright FV, Sheil EM, Drake JM, Wedge JH, Naumann S. Evaluation of selective dorsal rhizotomy for the reduction of spasticity in cerebral palsy: a randomized controlled tria. Dev Med Child Neurol. 1998;40(4):239–247.
- 62. Summers J, Coker B, Eddy S, *et al.* Selective dorsal rhizotomy in ambulant children with cerebral palsy: an observational cohort study. Lancet Child Adolesc Health. 2019;3(7):455–462.
- 63. Pennington M, Summers J, Coker B, *et al.* Selective dorsal rhizotomy; evidence on cost-effectiveness from England. PloS One. 2020;15(8):e0236783.
- 64. Engsberg JR, Ross SA, Collins DR, Park TS. Effect of selective dorsal rhizotomy in the treatment of children with cerebral palsy. J Neurosurg. 2006;105(1):8–15.
- 65. Salame K, Ouaknine GER, Rochkind S, Constantini S, Razon N. Surgical treatment of spasticity by selective posterior rhizotomy: 30 years experience. Isr Med Assoc J IMAJ. 2003;5(8):543–6.
- 66. Cole GF, Farmer SE, Roberts A, Stewart C, Patrick JH. Selective dorsal rhizotomy for children with cerebral palsy: the Oswestry experience. Arch Dis Child. 2007;92(9):781–785.
- 67. Oki A, Oberg W, Siebert B, Plante D, Walker ML, Gooch JL. Selective dorsal rhizotomy in children with spastic hemiparesis. J Neurosurg Pediatr. 2010;6(4):353–358.
- 68. Chicoine MR, Park TS, Kaufman BA. Selective dorsal rhizotomy and rates of orthopedic surgery in children with spastic cerebral palsy. J Neurosurg. 1997;86(1):34–39.
- 69. Mittal S, Farmer J-P, Al-Atassi B, *et al.* Functional performance following selective posterior rhizotomy: long-term results determined using a validated evaluative measure. J Neurosurg. 2002;97(3):510–518.
- 70. Tedroff K, Löwing K, Jacobson DNO, Åström E. Does loss of spasticity matter? A 10-year follow-up after selective dorsal rhizotomy in cerebral palsy. Dev Med Child Neurol. 2011;53(8):724–729.
- 71. Langerak NG, Tam N, Vaughan CL, Fieggen AG, Schwartz MH. Gait status 17-26 years after selective dorsal rhizotomy. Gait Posture. 2012;35(2):244–249.
- 72. Kainz H, Hoang H, Pitto L, et al. Selective dorsal rhizotomy improves muscle forces during walking in children with spastic cerebral palsy. Clin Biomech Bristol Avon. 2019:65:26–33.
- 73. Uematsu S, Udvarhelyi GB, Benson DW, Siebens AA. Percutaneous radiofrequency rhizotomy. Surg Neurol. 1974;2(5):319–325.
- 74. Smith HP, McWhorter JM, Challa VR. Radiofrequency neurolysis in a clinical model. Neuropathological correlation. J Neurosurg. 1981;55(2):246–253.

Capítulo 47

- 75. Turnbull IM. Percutaneous lumbar rhizotomy for spasms in paraplegia. Paraplegia. 1983;21(2):131–136.
- 76. Young B, Mulcahy JJ. Percutaneous sacral rhizotomy for neurogenic detrusor hyperreflexia. J Neurosurg. 1980;53(1):85–87.
- 77. Vles GF, Vles JS, van Kleef M, *et al.* Percutaneous radiofrequency lesions adjacent to the dorsal root ganglion alleviate spasticity and pain in children with cerebral palsy: pilot study in 17 patients. 2010;10:52.
- 78. Shelden CH, Bors E. Subarachnoid alcohol block in paraplegia; its beneficial effect on mass reflexes and bladder dysfunction. J Neurosurg. 1948;5(4):385–391.
- 79. Evangelou M, Adriani J. Chemical rhizotomy (intrathecal alcohol) for paraplegic clonus. Anesthesiology. 1955;16(4):594–597.
- 80. Nathan PW. Intrathecal phenol to relieve spasticity in paraplegia. The Lancet. 1959;274(7112):1099–1102.
- 81. Kelly RE, Smith PCG. Intrathecal phenol in the treatment of reflex spasms and spasti city. Lancet. 1959;274(7112):1102–1105.
- 82. Sindou M. Étude de la jonction radiculo-médullaire postérieure, la radicellotomie postérieure sélective dans la chirurgie de la douleur. Vaulx en Velin. 1972.
- 83. Sindou M, Mifsud JJ, Boisson D, Goutelle A. Selective posterior rhizotomy in the dorsal root entry zone for treatment of hyperspasticity and pain in the hemiplegic upper limb. Neurosurgery. 1986;18(5):587–595.
- 84. Guidetti B, Fraioli B. Neurosurgical treatment of spasticity and dyskinesias. Acta Neurochir (Wien). 1977;(24):27–39.
- 85. Teixeira MJ, Souza ECD, Yeng LT, Pereira WC. A lesão do trato de Lissauer e do corno posterior da substância cinzenta da medula espinal e a estimulação elétrica do sistema nervoso central para o tratamento da dor por avulsão de raízes do plexo braquial. Arq Neuropsiquiatr. 1999;57:56–62.
- 86. Jeanmonod D, Sindou M, Magnin M, Boudet M. Intraoperative unit recordings in the human dorsal horn with a simplified floating microelectrode. Electroencephalogr Clin Neurophysiol. 1989;72(5):450–454.
- 87. Monaco BA de, Lopes AJM, Teixeira MJ. Ultrasound-Guided DREZotomy: Technical Note. Stereotact Funct Neurosurg. 2019;97(2):127–131.
- 88. Sindou M. Microsurgical DREZotomy (MDT) for pain, spasticity, and hyperactive bladder: a 20-year experience. Acta Neurochir (Wien). 1995;137(1–2):1–5.

- 89. Maccarty CS. The treatment of spastic paraplegia by selective spinal cordectomy. J Neurosurg. 1954;11(6):539–545.
- 90. Bischof W. [On dorsal longitudinal myelotomy]. Zentralblatt fur Neurochirurgie. 1967;28(3):123–6.
- 91. Laha RK, Dujovny M, Osgood CP. Dorsal longitudinal myelotomy. Paraplegia. 1976;14(3):189–194.
- 92. Livshits A, Rappaport ZH, Livshits V, Gepstein R. Surgical treatment of painful spasticity after spinal cord injury. Spinal Cord. 2002;40(4):161–166.
- 93. Cooperrider J, Momin A, Baker KB, Machado AG. Cerebellar Neuromodulation for Stroke. Curr Phys Med Rehabil Rep. 2020;8(2):57–63.
- 94. Horisawa S, Kohara K, Nonaka T, Mochizuki T, Kawamata T, Taira T. Case Report: Deep Cerebellar Stimulation for Tremor and Dystonia. Front Neurol. 2021;12:642904.
- 95. Moruzzi G, Pompeiano O. Crossed fastigial influence on decerebrate rigidity. J Comp Neurol. dezembro de 1956;106(2):371–392.
- 96. Heimburger RF, Whitlock CC. Stereotaxic destruction of the human dentate nucleus. Confin Neurol. 1965;26(3):346–358
- 97. Hitchcock E. Dentate lesions for involuntary movement. Proc R Soc Med. setembro de 1973;66(9):877–879.
- 98. Hassler R, Riechert T, Mundinger F, Umbach W, Ganglberger JA. Physiological observations in stereotaxic operations in extrapyramidal motor disturbances. Brain J Neurol. 1960:83:337–350.
- 99. Nashold BS, Slaughter DG. Effects of stimulating or destroying the deep cerebellar regions in man. J Neurosurg. 1969;31(2):172–186.
- 100. Heimburger F. The Role of the Cerebellar Nuclei in Spasticity. Stereotact Funct Neurosurg. 1970;32(2–5):105–113.
- 101. Mundinger F, Ostertag C. Multilocular lesions in the therapy of cerebral palsy. Acta Neurochir (Wien). 1977;(24):11–14.
- 102. Siegfried J, Verdie JC. Long-term assessment of stereotactic dentatotomy for spasticity and other disorders. Acta Neurochir (Wien). 1977;(24):41-48.

Capítulo 47