Coffection:

APPLIED CIVIL ENGINEERING 2

Coffection:

APPLIED CIVIL ENGINEERING 2

Editora chefe Prof^a Dr^a Antonella Carvalho de Oliveira Editora executiva Natalia Oliveira Assistente editorial Flávia Roberta Barão Bibliotecária Janaina Ramos Projeto gráfico Bruno Oliveira Camila Alves de Cremo Daphynny Pamplona 2022 by Atena Editora Luiza Alves Batista Copyright © Atena Editora Natália Sandrini de Azevedo Copyright do texto © 2022 Os autores Imagens da capa Copyright da edição © 2022 Atena Editora iStock Direitos para esta edição cedidos à Atena Edicão de arte Editora pelos autores. Luiza Alves Batista Open access publication by Atena Editora

Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição *Creative Commons*. Atribuição-Não-Comercial-NãoDerivativos 4.0 Internacional (CC BY-NC-ND 4.0).

O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores, inclusive não representam necessariamente a posição oficial da Atena Editora. Permitido o *download* da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.

Todos os manuscritos foram previamente submetidos à avaliação cega pelos pares, membros do Conselho Editorial desta Editora, tendo sido aprovados para a publicação com base em critérios de neutralidade e imparcialidade acadêmica.

A Atena Editora é comprometida em garantir a integridade editorial em todas as etapas do processo de publicação, evitando plágio, dados ou resultados fraudulentos e impedindo que interesses financeiros comprometam os padrões éticos da publicação. Situações suspeitas de má conduta científica serão investigadas sob o mais alto padrão de rigor acadêmico e ético.

Conselho Editorial

Ciências Exatas e da Terra e Engenharias

Prof. Dr. Adélio Alcino Sampaio Castro Machado - Universidade do Porto

Prof^a Dr^a Alana Maria Cerqueira de Oliveira - Instituto Federal do Acre

Prof^a Dr^a Ana Grasielle Dionísio Corrêa - Universidade Presbiteriana Mackenzie

Prof^a Dr^a Ana Paula Florêncio Aires – Universidade de Trás-os-Montes e Alto Douro

Prof. Dr. Carlos Eduardo Sanches de Andrade - Universidade Federal de Goiás

Prof^a Dr^a Carmen Lúcia Voigt – Universidade Norte do Paraná

Prof. Dr. Cleiseano Emanuel da Silva Paniagua - Instituto Federal de Educação, Ciência e Tecnologia de Goiás

Prof. Dr. Douglas Gonçalves da Silva - Universidade Estadual do Sudoeste da Bahia

Prof. Dr. Eloi Rufato Junior – Universidade Tecnológica Federal do Paraná

Prof^a Dr^a Érica de Melo Azevedo – Instituto Federal do Rio de Janeiro

Prof. Dr. Fabrício Menezes Ramos - Instituto Federal do Pará

Prof^a Dra. Jéssica Verger Nardeli – Universidade Estadual Paulista Júlio de Mesquita Filho

Prof. Dr. Juliano Bitencourt Campos - Universidade do Extremo Sul Catarinense

Prof. Dr. Juliano Carlo Rufino de Freitas - Universidade Federal de Campina Grande

Prof^a Dr^a Luciana do Nascimento Mendes – Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte

Prof. Dr. Marcelo Marques - Universidade Estadual de Maringá

Prof. Dr. Marco Aurélio Kistemann Junior - Universidade Federal de Juiz de Fora

Prof. Dr. Miguel Adriano Inácio - Instituto Nacional de Pesquisas Espaciais

Prof^a Dr^a Neiva Maria de Almeida - Universidade Federal da Paraíba

Prof^a Dr^a Natiéli Piovesan – Instituto Federal do Rio Grande do Norte

Prof^a Dr^a Priscila Tessmer Scaglioni – Universidade Federal de Pelotas

Prof. Dr. Sidney Gonçalo de Lima - Universidade Federal do Piauí

Prof. Dr. Takeshy Tachizawa - Faculdade de Campo Limpo Paulista

Collection: applied civil engineering 2

Diagramação:	Daphynny Pamplona
Correção:	Mariane Aparecida Freitas
Indexação:	Amanda Kelly da Costa Veiga
Revisão:	Os autores
Organizador:	Armando Dias Duarte

Dados Internacionais de Catalogação na Publicação (CIP)		
C697	Collection: applied civil engineering 2 / Organizador Armando Dias Duarte. – Ponta Grossa - PR: Atena, 2022.	
	Formato: PDF Requisitos de sistema: Adobe Acrobat Reader Modo de acesso: World Wide Web Inclui bibliografia ISBN 978-65-258-0174-2 DOI: https://doi.org/10.22533/at.ed.742222604	
	1. Civil engineering. I. Duarte, Armando Dias (Organizador). II. Título. CDD 624	
E	laborado por Bibliotecária Janaina Ramos - CRB-8/9166	

Atena Editora Ponta Grossa – Paraná – Brasil Telefone: +55 (42) 3323-5493 www.atenaeditora.com.br contato@atenaeditora.com.br

DECLARAÇÃO DOS AUTORES

Os autores desta obra: 1. Atestam não possuir qualquer interesse comercial que constitua um conflito de interesses em relação ao artigo científico publicado; 2. Declaram que participaram ativamente da construção dos respectivos manuscritos, preferencialmente na: a) Concepção do estudo, e/ou aquisição de dados, e/ou análise e interpretação de dados; b) Elaboração do artigo ou revisão com vistas a tornar o material intelectualmente relevante; c) Aprovação final do manuscrito para submissão.; 3. Certificam que os artigos científicos publicados estão completamente isentos de dados e/ou resultados fraudulentos; 4. Confirmam a citação e a referência correta de todos os dados e de interpretações de dados de outras pesquisas; 5. Reconhecem terem informado todas as fontes de financiamento recebidas para a consecução da pesquisa; 6. Autorizam a edição da obra, que incluem os registros de ficha catalográfica, ISBN, DOI e demais indexadores, projeto visual e criação de capa, diagramação de miolo, assim como lançamento e divulgação da mesma conforme critérios da Atena Editora.

DECLARAÇÃO DA EDITORA

A Atena Editora declara, para os devidos fins de direito, que: 1. A presente publicação constitui apenas transferência temporária dos direitos autorais, direito sobre a publicação, inclusive não constitui responsabilidade solidária na criação dos manuscritos publicados, nos termos previstos na Lei sobre direitos autorais (Lei 9610/98), no art. 184 do Código Penal e no art. 927 do Código Civil; 2. Autoriza e incentiva os autores a assinarem contratos com repositórios institucionais, com fins exclusivos de divulgação da obra, desde que com o devido reconhecimento de autoria e edição e sem qualquer finalidade comercial; 3. Todos os e-book são *open access, desta forma* não os comercializa em seu site, sites parceiros, plataformas de *e-commerce,* ou qualquer outro meio virtual ou físico, portanto, está isenta de repasses de direitos autorais aos autores; 4. Todos os membros do conselho editorial são doutores e vinculados a instituições de ensino superior públicas, conforme recomendação da CAPES para obtenção do Qualis livro; 5. Não cede, comercializa ou autoriza a utilização dos nomes e e-mails dos autores, bem como nenhum outro dado dos mesmos, para qualquer finalidade que não o escopo da divulgação desta obra.

APRESENTAÇÃO

A coleção de trabalhos intitulada "*Collection: Applied civil engineering 2*" é uma obra que tem como foco principal a discussão científica por intermédio de diversos trabalhos que compõe seus capítulos. O volume abordará de forma categorizada e interdisciplinar, pesquisas cujos resultados possam auxiliar na tomada de decisão, tanto no campo acadêmico, quanto no profissional.

Os trabalhos desenvolvidos foram realizados em instituições de ensino e pesquisa no Brasil. Nos capítulos apresentados, são encontrados estudos de grande valia nas áreas de materiais da construção civil, métodos numéricos e segurança. A composição dos temas buscou a proposta de fundamentar o conhecimento de acadêmicos (as), mestres (as) e todos (as) aqueles (as) que de alguma forma se interessam pela área da Engenharia Civil, através de temáticas atuais com resoluções inovadoras, descritas nos capítulos da coleção. Sendo assim, a divulgação científica é apresentada com grande importância para o desenvolvimento de toda uma nação, portanto, fica evidenciada a responsabilidade de transmissão dos saberes através de plataformas consolidadas e confiáveis, como a Atena Editora, capaz de oferecer uma maior segurança para os novos pesquisadores e os que já atuam nas diferentes áreas de pesquisa, exporem e divulgarem seus resultados.

Armando Dias Duarte

SUMÁRIO

CAPÍTULO 11
A INFLUÊNCIA DA UTILIZAÇÃO DE CINZA PESADA COMO SUBSTITUIÇÃO AO AGREGADO MIÚDO NATURAL EM ARGAMASSA André Valmir Saugo Ribeiro
Jéssyca Mendes da Silva
Eduardo Nobre Guindani
Philippe Jean Paul Gleize
https://doi.org/10.22533/at.ed.7422226041
CAPÍTULO 2
MANIFESTAÇÕES PATOLÓGICAS DE REVESTIMENTOS CERÂMICOS EM FACHA- DAS: UM ESTUDO DE CASO Francisca Evânia Carvalho Aridenise Macena Fontenelle
🚭 https://doi.org/10.22533/at.ed.7422226042
CAPÍTULO 3
ANÁLISE DE MODELOS DE CÁLCULO DE PONTES COM MÚLTIPLAS VIGAS Luís Gabriel de Moura Daniele Martins Isadora Paczek Guilherme Alves Correa
😳 https://doi.org/10.22533/at.ed.7422226043
CAPÍTULO 4
ANÁLISE DA FORÇA CORTANTE EM LAJES COM VIGOTAS TRELIÇADAS Rodrigo Bender Daniele Martins Isadora Paczek Guilherme Alves Correa
🕹 https://doi.org/10.22533/at.ed.7422226044
CAPÍTULO 5
COMPARAÇÃO DE ARMADURA MÍNIMA EM VIGAS PROTENDIDAS EM PÓS-TRAÇÃO ADERENTE COM CAD E CRF Fernando Machado Parizi
🕹 https://doi.org/10.22533/at.ed.7422226045
CAPÍTULO 6
MODOS DE FALHA EM BARRAGENS E O FENÔMENO DA LIQUEFAÇÃO Rafaela Baldí Fernandes

SUMÁRIO

🔄 https://doi.org/10.22533/at.ed.7422226046

CAPÍTULO 7
PRÉDIOS SOB AÇÃO DE TERREMOTO: ANÁLISE E PROJETO DE SISTEMA DE CONTROLE
Denner Cirqueira Costa
Wallysonn Alves de Souza
💿 https://doi.org/10.22533/at.ed.7422226047
CAPÍTULO 8
APLICAÇÃO DE INSTRUÇÕES TÉCNICAS DO CBMPA PARA AVERIGUAÇÃO DAS MEDIDAS DE SEGURANÇA CONTRA INCÊNDIO EM INSTITUIÇÕES DE ENSINO Flaviany Luise Nogueira de Sousa Nuria Pérez Gallardo Tamara Daiane de Souza
^w https://doi.org/10.22533/at.ed.7422226048
SOBRE O ORGANIZADOR88
ÍNDICE REMISSIVO89

CAPÍTULO 3

ANÁLISE DE MODELOS DE CÁLCULO DE PONTES COM MÚLTIPLAS VIGAS

Data de aceite: 01/04/2022

Luís Gabriel de Moura

Engenheiro Civil/Universidade de Santa Cruz do Sul

Daniele Martins

Mestranda em Engenharia Civil/Universidade Federal de Santa Maria / PPGEC

Isadora Paczek

Mestranda em Engenharia Civil/Universidade Federal de Santa Maria / PPGEC

Guilherme Correa

Mestrando em Engenharia Civil/Universidade Federal de Santa Maria / PPGEC

RESUMO: 0 trabalho descreve alguns métodos para a distribuição de ações nas pontes rodoviárias dotadas de múltiplas vigas. Escolheu-se modelos estruturais de pontes com duas longarinas e em múltiplas longarinhas, sendo aplicados o método de Engesser-Courbon com rigidez real na transversina. Engesser-Courbon com rigidez infinita na transversina, que se tratam de análises bidimensionais e o Método dos Elementos Finitos de análise tridimensional, a fim de que os mesmos fossem comparados. Os principais resultados são os de trem-tipo simplificado, momento fletor positivo e área de aço resultante do dimensionamento à flexão das seções em concreto armado destas longarinas, sendo que os valores se mantiveram próximos em todos os resultados. Nos resultados obtidos o método de EngesserCourbon com a rigidez real da transversina que faz uma simplificação, mostrou-se mais preciso, pois seus resultados mantiveram-se superiores. Observou-se que o Método dos Elementos Finitos tem uma maior precisão, pois a estrutura é modelada tridimensionalmente, fazendo com que longarinas, transversinas, tabuleiro trabalhem juntos e ainda com seus parâmetros dos materiais.

PALAVRAS-CHAVE: Pontes; Análise de estruturas; Métodos de distribuição.

RESUMO: The work describes some methods for the distribution of actions in road bridges with multiple beams. Structural models of bridges with two spars and with multiple spars were chosen, using the Engesser-Courbon method with real stiffness in the transverse, Engesser-Courbon with infinite stiffness in the transverse, which are two-dimensional analyzes and the Finite Element Method three-dimensional analysis, in order to compare them. The main results are the simplified type train, positive bending moment and steel area resulting from the flexural design of the reinforced concrete sections of these stringers. and the values remained close in all results. In the results obtained, the Engesser-Courbon method with the real stiffness of the transversina, which makes a simplification, proved to be more accurate, as its results remained superior. It was observed that the Finite Element Method has a greater precision, because the structure is threedimensionally modeled, making the stringers, transverses, deck work together and even with their material parameters.

KEYWORDS: Bridges; Analysis of structures;

Distribution methods.

1 | INTRODUÇÃO

A estrutura de uma ponte possui particularidades em seu dimensionamento, uma delas é as ações em que a estrutura fica submetida. O trabalho descreve alguns métodos para a distribuição de diferentes ações nas pontes rodoviárias dotadas de múltiplas vigas. Escolheu-se para análise, dois modelos estruturais de pontes, sendo um de uma ponte com duas longarinas e o outro de uma ponte com quatro longarinas, para os quais foram aplicados o método de Engesser-Courbon com rigidez real na transversina, Engesser-Courbon com rigidez infinita na transversina que se tratam de análises bidimensionais e o Método dos Elementos Finitos de análise tridimensional, a fim de que os mesmos fossem comparados. Na definição dos modelos de pontes empregados foram observadas as prescrições da NBR 7188:2013, assim como da NBR 6118:2014.

21 MÉTODOS DE CÁLCULO

2.1 Métodos de Cálculo para Pontes com Múltiplas Vigas

A distribuição transversal das cargas em estruturas e dependente da eficiência da ligação transversal entre os elementos de suporte principal. A estrutura sujeita a cargas concentradas, originadas pelos veículos correntes, é bem mais econômica quanto maior for a sua capacidade de repartição transversal, assim sendo qualquer carga num ponto indiferenciado da estrutura é suportada não apenas pelo elemento principal, sendo também com o auxílio dos elementos adjacentes, (CARRIL E LOPES, (19--?).

2.1.1 Método Engesser-Courbon

O método de Courbon desconsidera a torção nas vigas. São considerados além da Teoria das Estruturas básica, as seguintes hipóteses: as longarinas são paralelas, interligadas perpendicularmente por transversinas e contém inercia constante; as transversinas estão somente apoiadas nas longarinas e considerando que estas apresentam rigidez infinita à flexão, com desprezo a suas deformações comparadas com as deformações das longarinas; o efeito da torção é desconsiderado. Desta forma, as transversinas se comportam como barra rígidas, continuando com seus eixos retilíneos depois da deformação do conjunto, (ALVEZ, ALMEIRA E JUDICE, 2004).

2.1.2 Método dos elementos finitos

O Método dos Elementos Finitos, prevê a divisão do domínio de integração, contínuo, em um número finito de pequenas regiões denominadas elementos finitos, tornando o meio contínuo em discreto. Esta divisão do domínio recebe o nome de rede de elementos finitos. O tamanho dos elementos finitos podem ser variados, aumentando ou diminuindo a malha desse reticulado. Os pontos de intersecção das linhas dessa rede chamam-se de nós, (ASSAN, 1999).

3 | METODOLOGIA

Este trabalho compara os resultados de diferentes composições de trem-tipo simplificado, momento maior atuante na estrutura e a área de aço de uma ponte rodoviária TB – 450, adotando no mesmo modelo de ponte, o método com a estrutura de duas longarinas e a estrutura com múltiplas longarinas, comparando os resultados de trem-tipo de flexão, momento fletor máximo e área de aço.

3.1 Ponte com duas longarinas

O modelo utilizado foi uma ponte TB – 450 construída por 2 vigas longarinas principais, sendo elas unidas por 3 vigas transversinas. As longarinas possuem um vão de 15 m, seção transversal 0,40 x 1,50 m. Já as transversinas possuem seção transversal de 0,30 x 1,00 m. Utilizou-se concreto C40, f_{ck} = 40 MPa, de módulo de elasticidade E_{ci} = 42.501,00 MPa, este definido conforme NBR 6118:2014. A seguir, conforme figura 1 e 2, o esquema transversal e longitudinal da estrutura da ponte em análise (medidas em m).

Figura 1 – Esquema transversal da ponte TB – 450.

3.2 Ponte com quatro longarinas

O modelo utilizado foi uma ponte TB – 450 construída por 4 vigas longarinas principais, sendo elas unidas por 3 vigas transversinas. As longarinas possuem um vão de 15 m, seção transversal 0,40 x 1,25 m. Já as transversinas possuem seção transversal de 0,30 x 1,00 m. Utilizou-se concreto C40, fck = 40 MPa, de módulo de elasticidade Ecs = 42.501,00 MPa, este definido conforme NBR 6118:2014. A seguir, diante das figuras 3 e 4, será representado o esquema transversal e longitudinal da estrutura da ponte em análise (medidas em m).

Figura 3 – Esquema transversal de ponte TB – 450, com 4 longarinas.

Figura 4 – Esquema longitudinal de ponte TB – 450, com 4 longarinas.

4 | RESULTADOS

Na ponte com duas longarinas, a estrutura é simétrica, sendo que a V1 é igual a V2. Na ponte com quatro longarinas cada longarina possui seu próprio trem-tipo de flexão, como a estrutura da ponte é simétrica, a longarina V1 é igual a V4, assim como a V2 é igual a V3.

4.1 Resultados obtidos utilizando o método dos Elementos Finitos, longarina 1 (V1)

Em seguida, nas figuras 5, encontra-se as deformações da ponte, com os carregamentos aplicados voltados para a obtenção dos valores para a longarina 1.

Figura 5 – Visualizações das tensões da parte inferior do tabuleiro, longarina 1.

Os valores das tensões máximas e mínimas em KN/cm², em relação ao eixo x em

cada nó da seção em análise: -0,40214; -0,31478; -0,23117; -0,13079; -0,030529; 0,071514; 0,17427; 0,27567; 0,37837; 0,48205; 0,58430; 0,68044; 0,77679; 0,85441.

4.2 Resultados obtidos utilizando o método dos Elementos Finitos, longarina 2 (V2)

Em seguida, como demonstra as figura 6, encontra-se as deformações da ponte, com os carregamentos aplicados voltados para a obtenção dos valores para a longarina 2.

Figura 6 – Visualizações das tensões da parte inferior do tabuleiro, longarina.

A seguir encontra-se os valores exatos das tensões máximas e mínimas em KN/ cm², em relação ao eixo x em cada nó da seção em análise: -0,26267; -0,21417; -0,14922 ; -0,078024 ; -0,007875 ; 0,060258 ; 0,12774 ; 0,19654 ; 0,26580 ; 0,33323 ; 0,40439 ; 0,47261 ; 0,53279 ; 0,57706.

4.3 Resultados obtidos para o projeto de ponte com duas longarinas

Os resultados obtidos para trem-tipo, momento máximo e área de aço para a longarina 1, sendo que a ponte é simétrica, os mesmos resultados se replicam para a longarina 2, conforme tabelas 1 e 2 e figura 7.

Longarina V1 = V2	RP (kN) 151,95	RP1 (kN/m) 13,61	RP2 (kN/m) 15,19	RP' (kN) 121,57	RP1 + PR2 (kN/m) 28,80
		Tabela 1	- Valor do trem-tipo.		
_	Longarina V1 = V2	M	omento (kN.m) 3312,45	Área de aço (cm²) 93,44	
_	Tabela 2	2 -Momento máxim	no e área de aço para	duas longarinas.	
		3 x	121,57 kN		
		¥	¥ ¥		
		2	8.80 kN/m		

Figura 7 – Trem-tipo simplificado para duas longarinas.

4.4 Resultados obtidos para o projeto da ponte com múltiplas vigas, longarina 1, (V1)

Em seguida os resultados obtidos utilizando o método de Engesser-Courbon, consistem em trem-tipo final e simplificado, figuras 8 e 9, momento fletor máximo e área de aço, quando aplicado uma carga unitária na longarina 1 (V1), definiu-se os coeficientes de repartição transversal. Esses resultados encontram-se tabelados a seguir (Tabelas 3, 4, 5 e 6).

Longarina	Coeficiente de repartição transversal, rigidez real na transversina	Coeficiente de repartição transversal, infinita á rigidez na transversina
V1	0,79	0,70
V2	0,31	0,40
V3	0,02	0,10
V4	-0,12	-0,20

Tabela 3 – Valores de coeficiente de repartição transversal pelo métodos de Engesser- Courbon.

Rigidez na transversina	Longarina	RP (kN)	RP1 (kN/m)	RP2 (kN/m)	RP' (kN)	RP1 + PR2 (kN/m)
Real	V1	105,75	6,15	10,55	84,65	16,70
Infinita	V1	95,25	6,50	9,50	76,25	16,00

Tabela 4 – Valores de trem-tipo para as diferentes rigidez analisadas, via Engesser-Courbon.

4.5 Resultados obtidos para o projeto da ponte com múltiplas vigas, longarina 2, (V2)

Em seguida os resultados obtidos utilizando o método de Engesser-Courbon, consistem em trem-tipo final e simplificado, figuras 10 e 11, momento fletor máximo e área de aço para a longarina 2 (V2), assim como, os coeficientes de repartição transversal. Esses resultados encontram-se tabelados a seguir (Tabelas 7, 8, 9 e 10).

Longarina	Coeficiente de repartição transversal, rigidez real na	Coeficiente de repartição transversal, infinita à rigidez
	transversina	na transversina
V1	0,31	0,40
V2	0,41	0,30
V3	0,26	0,20
V4	0,02	0,10

Tabela 7 – Valores de coeficiente de repartição transversal pelo métodos de Engesser- Courbon.

5 | ANÁLISE COMPARATIVA DOS RESULTADOS

5.1 Momento máximo via Método dos elementos finitos, longarina 1 (V1)

A posição da linha neutra em relação à base da seção foi de 84,424 cm, assim, por meio da análise das tensões normais de flexão, considerando a seção na fase elásticalinear, obteve-se o momento fletor máximo da longarina 1. O momento de inércia da seção foi de 12194770,80723 cm⁴, tendo sido obtido o momento fletor máximo de 2045,632 KN.m

5.2 Momento máximo via Método dos Elementos Finitos, longarina 2 (V2)

A posição da linha neutra em relação à base da seção foi de 85,622 cm, assim por meio da análise das tensões normais de flexão, considerando a seção na fase elásticalinear, obteve-se o momento fletor máximo da longarina 2. O momento de inércia da seção foi de 12525664,00131cm⁴, tendo sido obtido o momento fletor máximo de 13399,232KN.m.

5.3 Análise da ponte típica-2L com a ponte de múltiplas vigas-4L, rigidez infinita na transversina.

Em seguida é apresentada a comparação do trem-tipo simplificado (figuras 12 e 13). momento fletor máximo e área de aço das longarinas analisadas (figuras 14 e 15).

longarina 1 (V1).

longarina 2 (V2).

Observando os valores é possível verificar que o momento fletor resultante máximo nas duas longarinas é obtido pelo método típico, para o modelo com duas longarinas. Os valores encontrados foram 67,19% superior para a longarina 1, e 168,42% superior para a longarina 2.

Método	Longarina	Área de aço (cm²)
Engesser- Courbon I.R.T.	L1	65,56
Engesser- Courbon I.R.T.	L2	39,27
Método típico-2L	L1=L2	93,44
Engesser- Courbon I.R.T.	L1+L2	104,83

Tabela 11 – Comparativo área de aco.

Analisando os resultados da tabela 11, verifica-se que, separadamente a área de aço da longarina 1 pelo método típico 2L, é maior que o calculado pelo método de Engesser-Courbon. Analisando a estrutura da ponte pela metade, somando a área de

aco da longarina 1 com a longarina 2, via método Engesser- Courbon, a resultante das duas longarinas é superior a área de aco via método típico com duas longarinas, em um percentual de 12,19%.

5.4 Análise dos resultados para o projeto de ponte com múltiplas viga

Em seguida encontra-se os resultados para o trem-tipo de flexão, máximo momento fletor e área de aco para os métodos analisados.

5.4.1 Análise para a longarina 1 (V1)

Como mostrado a seguir, o trem-tipo simplificado calculado pelo método Engesser-Courbon com a rigidez real na transversina apresentou os maiores valores de ações (Figura 16).

Engesser-Courbon.

longarina 1 (V1).

Analisando os valores resultantes, é possível verificar que o momento fletor máximo foi obtido quando considerou-se a rigidez real na transversina, via método Engesser-Courbon, conforme figura 17. Para fins de comparação tomou-se como referência o Método dos elementos Finitos, onde o método de MEF possui um momento 3,25% superior ao Engesser Courbon com I.R.T e o método com R.R.T 5,09% de superioridade ao MEF. Já comparando as diferenças do método de Engesser Courbon, o método com R.R.T possui um momento superior de 8,51% ao método com I.R.T.

Método	Área de aço (cm²)
Engesser- Courbon I.R.T.	65,56
Método dos Elementos Finitos	70,29
Engesser- Courbon R.R.T.	73,88

Tabela 12 – Comparativo área de aço longarina 1 (V1).

Observa-se na tabela 12, verifica-se que o método Engesser-Courbon com a rigidez real na transversina apresenta uma área de aço 5,11% superior ao método dos Elementos finitos, e o MEF uma área de aco 7,21% superior ao Engesser-Courbon com a infinita rigidez na transversina. Comparando as diferenças entre o método de Engesser Courbon, o método com R.R.T. contém uma área de aço 12,69% superior ao método com I.R.T.

5.4.2 Análise para a longarina 2 (V2)

Como mostrado a seguir, o trem-tipo simplificado calculado pelo método Engesser-Courbon com a rigidez real na transversina, demonstrou os maiores valores para a carga da roda e para a carga distribuída de multidão, conforme Figura 18.

Analisando os valores resultantes, verifica-se que o momento fletor máximo foi obtido quando empregado o MEF, como mostrado na figura 19. Para fins de comparação tomou-se como referência o Método dos elementos Finitos, onde o MEF possui um momento 13,38% superior ao Engesser Courbon com I.R.T.. O MEF um momento de 0,27% superior ao Engesser Courbon com R.R.T.. Já comparando as diferenças entre o método do Engesser Courbon, o método com R.R.T possui um momento superior de 13,08% ao método com I.R.T.

Método	Área de aço (cm²)
Engesser- Courbon I.R.T.	39,27
Engesser- Courbon R.R.T.	44,40
Método dos Elementos Finitos	44,50

Tabela 13 – Comparativo área de aço longarina 2 (V2).

Observa-se por meio da tabela 13, que o método dos Elementos Finitos apresenta uma área de aço 0,22% superior ao método Engesser-Courbon com a rigidez real na transversina, e o MEF uma área de aço 13,32% superior ao método de Engesser-Courbon com a infinita rigidez na transversina. Comparando as diferenças entre o método de Engesser Courbon, o método com R.R.T. contém uma área de aço 13,06% superior ao método com I.R.T.

6 | CONCLUSÃO

Para os resultados comparativos da ponte projetada com duas longarinas pelo método típico e a ponte projetada com múltiplas longarinas via modelo de Engesser-Courbon com infinita rigidez na transversina, o trem-tipo de flexão, obteve valores superiores ao da ponte com duas longarinas calculada pelo método típico, chegando a valores até 168,42% superiores para a longarina 2. Porém, ao analisar a área de aço utilizada pela metade da ponte, o projeto com múltiplas vigas apresentou uma área de aço 12,19% maior, resultando em um dimensionamento mais conservador.

Ao comparar a ponte com múltiplas vigas via, método Engesser-Courbon com infinita rigidez na transversina, Engesser-Courbon com rigidez real na transversina e método dos Elementos Finitos, em relação aos resultados finais do máximo momento fletor e área de aço, para a longarinas 1 (V1), os resultados mostraram-se superiores para o método de Engeser-Courbon com rigidez real na transversina, e para a longarina 2 (V2), os resultados mostraram-se superior para o método dos Elementos Finitos. Pode-se concluir que o método de Engesser-Courbon, com a rigidez da transversina considerada infinita, apresentou valores inferiores quando comparados com os outros métodos analisados, portanto, consequentemente mais econômico.

No presente estudo, na longarina 1 em análise, apresentou resultados inferiores no máximo momento fletor e área de aço, comparado com o método de Engesser- Courbon com R.R.T., mas analisando a longarina 2, o MEF apresentou resultados de momento fletor e área de aço, superiores aos obtidos pelo método de Engesser-Courbon com R.R.T.

REFERÊNCIAS

ALVES, E. V.; ALMEIDA, S. M. F.; JUDICE, F. M. S. Métodos de análise estrutural de tabuleiros de pontes em vigas múltiplas de concreto protendido. Entrevista, Niterói, v. 6, n. 2, p. 48-58, ago. 2004.

ASSAN, A. E., Método dos Elementos Finitos: Primeiros passos. 1. ed. Campinas, São Paulo, Unicamp, 1999.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7188: projeto de pontes de concreto armado e concreto protendido: procedimento. Rio de Janeiro, 2013.

_____. NBR 6118: projeto de estruturas de concreto: procedimento. Rio de Janeiro, 2014.

CARRIL, R. S.; LOPES, V. M. F., Métodos aproximados de determinação da distribuição de esforços na secção transversal de pontes rodoviárias. Comparação com métodos mais exatos, (19--?).

ÍNDICE REMISSIVO

Α

Análise de estruturas 20 Análise experimental 32 Análise teórica 32 Areias 58, 59, 64 Argamassa 1, 5, 6, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19 Armadura transversal 32, 34, 40, 41, 42, 44 **B**

Barragem 60, 61, 65

С

CAD 45 CBMPA 77, 78, 79, 80, 81, 82, 83, 84, 86 CRF 45, 48, 54

D

Desigualdades matriciais lineares 68, 69, 70 Distribuição 20, 21, 31, 63

Е

Estabilidade de lyapunov 69 Estado endurecido 1, 4, 5, 8 Estado fresco 1, 2, 4, 5, 6, 7

F

Fachadas 13, 14, 16, 17, 18, 19 Força cortante 32, 33, 38, 39, 40, 41, 42, 43, 44

I

Incêndio 77, 78, 79, 80, 81, 82, 83, 84, 86, 87 Instruções técnicas 77, 78, 79, 81, 86

L

Laje treliçada 32, 42 Liquefação 58, 59, 60, 61, 62, 63, 64, 65, 66

Μ

Massa 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 59, 60, 61, 63, 64, 72, 73, 74 Medidas de segurança 77, 78, 82, 84, 85, 86 Métodos 2, 3, 10, 19, 20, 21, 25, 26, 29, 31, 45, 47 Modo de falha 58, 65, 66

Ρ

Patologia 13, 16, 17, 18 Pontes 20, 21, 57 PONTES 20, 21, 31, 48 Pós-tração aderente 45, 46, 55, 57 Protendido 31, 45, 46, 47, 48, 49, 52, 56, 57

R

Revestimento cerâmico 13, 15, 19 S Sinistro 77, 78, 79, 80

Sistemas lineares 68, 70, 76

Т

Terremotos 65, 66, 68, 69, 71, 72 V

Viga 18, 29, 45, 47, 48, 49, 50, 52, 54, 55

- www.atenaeditora.com.br
- 🔀 contato@atenaeditora.com.br
- @atenaeditora
- f www.facebook.com/atenaeditora.com.br

Coffection:

APPLIED CIVIL ENGINEERING 2

- www.atenaeditora.com.br
- 🔀 contato@atenaeditora.com.br
- @ @atenaeditora
- f www.facebook.com/atenaeditora.com.br

Coffection:

APPLIED CIVIL ENGINEERING 2

