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INTRODUCTION
The following theorem consists of a 

distribution function for any variable-rate 
process or system with a given lifecycle. It 
was the result of an effort for improving the 
manner how the probability of disruption 
is frequently estimated in organizational 
processes during a risk analysis.

The result of the research was a probability 
distribution function for any stochastic 
process with a variable-rate function.

Reliability engineering, organizational 
processes and IT systems are direct 
applications of the Variable-Rate Probability 
Distribution (VRPD) theorem.

For example, the probability of failure of 
an electro-mechanical machine component 
in any time interval, that sometimes, requires 
complicated approaches through probability 
distributions that not always match the variable 
distribution, is easily performed through the 
VRPD theorem by merely considering the 
failure rate function.

Organizational processes and IT systems 
evolve with time, which means that, 
optimization and patches respectively, the 
probability of interruption decreases along 
the process/system (p/s) lifecycle.

Keywords: Evolutionary Process, Failure rate, 
Variable-rate probability distribution.

THEOREM
The probability of one or more interruptions 

(probability of success: P(X=1)) of a p/s in any 
interval tα ≤ t ≤ tb along its lifecycle with a 
known interruption rate function λ(t) is given 
by:

With K, the subspace of events of the p/s 
along its lifecycle

POSTULATE
There will be at least one interruption along 

the process/system lifecycle.

PROOF
Suppose an experiment with m number of 

processes or systems (p/s) of the same kind, 
starting their lifecycle at the same time (t=0).

Let us take a timeframe at ti out of the p/s 
lifecycle of size ∆T = tb - tα.

t

Figure 1 – failures of m cloned systems running



3
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.317212210014

The mean count of systems interrupted ci 
out of m systems on ∆ti is given by1: , which 
is the empirical probability of interruption of 
the p/s type, as it is stablished by the theorem 
of large numbers for Bernoulli trials:

With pi: Probability of a Bernoulli event at 
∆ti, ci ≤ m

An equivalent identity is given by the 
general low of large numbers which states 
that:

Making ∆T [t0, tn) the time frame of 
analysis, e.g., the p/s lifecycle.

With |∆t| = 
We can say that the interruption rate of a 

p/s in any time interval ∆t in [t0, tn) is given 
by:

With X: the random variable.
X = 1: sucessful event: one or more 

interruptions.
Now, if we divide the time interval ∆T in 

two, we will have that the probability of an 
event, resulting from any two independent 
and non-exclusive events, is given by:

Whereby, for n ≥ 2, the probability of one 
or more interruptions, i.e., (P(X = 1)), taking 
place along t0 ≤ t ≤ tn, can be expressed as 
follows:

1. The count of systems interrupted disregards the number of interruptions per system in the given interval

P(X = 1)t0 ≤ t < tn

With:
[t0, tn), any interval in [0, ∞)
i ≠ j ≠ k ≠ ... r ∀i, j, k, ..., r = 1, 2, 3, ..., n.
pi, pj, pk, ..., pr: the probability of the event 

in the time interval i, j, k, ..., r respectively. i.e., 
pi: Probability of the event in [t0, tn).

n: a possitive interger.

Note:
The first big operation of eq4 has  terms, 

i.e., n terms; the second,  terms; the third, 
 terms, and son on. The big operation before 

the last one has  terms, i.e., n terms.
The whole equation has a symmetric 

pattern, alternating between positive and 
negative. For instance, if we divide the 
subspace of events in ten intervals ∆t, the big 
operations that compound the eq4 will have 
the following number of terms plus the last 
term; corresponding to 

When n is even, it appears a mid-term (252 
in the example above). When n is odd, the 
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pattern is a perfect mirror. The total number 
of terms of the eq is given by:

END OF NOTE
Now, to calculate the probability of an event 

(one or more interruptions or failures) in any 
variable rate processes using the eq5, we must 
consider that if n increases,  decreases. 
Therefore, if ∆T is divided in n intervals 
with n very large, such that  ≤ 10-1, eq4 
converges on the second big operation and can 
be written as follows:

Making   = ∆t, from eq3 we have:

But,

Then, eq5 becomes:

Let us suppose that for t0 ≤ t < tn, there is a 
continuous function ζi (t) that represents the 
process/system (p/s) interruption rate in every 
∆t such that:

And ζi(u = v) = λi, ti-1 ≤ v < ti, with i = 1, 2, 
3, ..., n

According to the Mean Value Theorem we 
can find a value λi such that:

Graph 1 – Random interruption rate function ζi(t) of any p/s



5
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.317212210014

or, what is the same: ∆t * λi = pi =

Now, with:

Eq8 becomes:

Let us remember that ζi(u) is a continuous 
function by parts, i.e., continuous in every 
interval ti-1 ≤ u < it, such that .

Now, suppose that instead of having a 
continuous function by parts, there exists a 
continuous function λ(u) in t0 ≤ u < tn, such 
that:

Besides:

Thus:

Therefore:

As ∆t is very small (∆t<<1), we have that: 
(ti+1) (ti) ≈ 2(ti), therefore the eq14 becomes:

From eq15 into eq12:

Now, factorizing we have:

From eq11 we know that K is the subspace 
of all the events (interruptions or failures) of 
a p/s. K will depend on the p/s under analysis, 
for instance, if we take the subspace of all 
events along the p/s lifecycle, i.e., t0 = 0, and tn 
→ ∞, and if the limit exists, we have:

As we stated, an Evolutionary Process will 
have at least one interruption event along its 
lifecycle. Thus, from eq16:

Factorizing, we have:
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Then, with eq17 into eq16, without losing 
generality, the probability of interruption of 
an EP in any time interval t : [ta, tb) is given by:

Note:
In Conditional Probability of Failure, the 

subspace of events K, goes from ta to t → ∞, 
which makes  a function of time.

Therefore, the general case is given by:

CONCLUSION
The probability of interruption of an EP in 

an interval is given by eq18.
The probability density function of an EP 

with continuous interruption rate function 
λ(t), along EP lifecycle, is given by:

Q.E.D.
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