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Abstract: The state of functioning of the 
brain by self-regulation techniques allows 
the user to train the corresponding brain 
functions by different methods, making it 
possible to condition the brain to balance 
its functioning and im- prove memory, 
concentration and confidence. In this 
study, we investigated 5 individuals based 
on self-regulation of learning generated 
by responses to basic arithmetic stimuli, 
subtraction of two numbers. To do this, 
we study 5 of active EGG channels during 
arithmetic tests. For the series generated 
by the test, we applied the DFA method 
to assess the autocorrelation of the series, 
here representing the areas: frontal, central 
and parietal in two mo- ments of the scales, 
n ≤ 60 and n > 60 (30 seconds). We also 
investigate the rms root mean square 
function at three moments of the scale, n < 
10 (5 seconds), 10 < n < 100 and n > 100 
(50 seconds). The results found revealed 
non-stationary behavior with Brownian 
noise transition for n 60 ≥ and persistence 
for n > 60. With the rms root mean square 
function, on average, we verified that the 
central region, when compared to the 
other re- gions, the results revealed a positive 
difference for the fluctuation amplitude, with 
the exception of Cz(2) − Af4(9) em n > 100. 
Our findings pointed out that modeling DFA 
and rms function was useful for investigating 
responses to brain stimuli. Our research is a 
contribution to EEG analysis and to the areas 
of biophysics, systems analysis and digital 
signal processing.
Keywords: Self-regulation, Time series, EEG, 
Cognitive stimuli, rms function

INTRODUÇÃO
Self-regulation methods allow the user 

to train the corresponding brain functions 
through Brain Mapping techniques, such as 
electroencephalography (EEG) [1, 2]. Among 
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these methods, conditioning modalities, in 
addition to reestablishing electrophysiological 
patterns, such as neurofeedback, train the 
brain to balance its functioning and improve 
its memory, concentration and confidence 
[3]. This type of approach has attracted the 
interest of researchers from different areas 
of knowledge such as biophysics, systems 
analysis and signal processing. [4–10].

From the use of traditional spectral 
analysis approaches, such as the Fourier, 
Hilbert and Wavelet transforms, recent 
studies have demonstrated the approach of 
techniques related to the intentional control 
of cognitive stimuli [11–14] . It is possible 
to cite the work of Keyman (2019)[5] who 
studied the management of stress, directed 
to deeply located limbic areas. Young (2019)
[15] research that evaluated psychiatric 
disorders associated with emotion regulation 
in soldiers during combat training. Young 
(2017)[16] studied positive stimuli, including 
autobiographical memories, and also ex- 
amined the therapeutic effectiveness of 
real-time functional training. Bir- baumer 
(2009)[17] and Stoechel (2014)[18] stated that 
using the neurofeed- back/neuroimaging 
technique can be used to assess and/or alter 
patterns of brain activity associated with 
cognition or behavior while an individual 
is inside the real-time magmatic resonance 
scanner.

With a look at temporal coherence, which 
are brain areas correlated to the same scale, 
this study aims to analyze: i) the self-affinity 
of scales of EEG channels selected through 
the method of Rectified Fluctuation Analysis 
(DFA) [19]; ii) the fluctuation amplitude 
of a correlated signal pair generated by two 
active channels through the difference of the 
fluctuation amplitude

[1]. To present these findings, this paper 
has been divided into methodology and data 
(Section 2), results (Section 3) and conclusions 
(Section 4).

METODOLOGIA AND DATA
THE DATA
The database used in this research is in 

the public domain and is available at: https : 
//physionet.org/content/eegmat/1.0.0/. This 
database contains EEG recordings of subjects 
who performed arithmetic tasks at two times, 
before and during. EEGs were recorded using 
the Neurocom EEG system of 23 channels 
(Ukraine, XAI-MEDICA)[3, 20].

The arithmetic task consisted of serial 
subtraction of two numbers. Each test 
started with the communication numbers of 
4 digits (mining) and 2 digits (subtracting), 
for example: 3141 and 42. The EEG data files 
were made available in European Data Format 
(.EDF), so each test has 2 files:

1. with the suffix ”1” - the background EEG 
recording of a subject (before the mental 
arithmetic task);
2. with suffix ”2” - EEG recording during 
the mental arithmetic task.
According to Zyma et al. (2019)[3], during 

the EEG recording, the par- ticipants sat in a 
soundproof darkroom, comfortably reclining 
in an armchair. Before the experiment, 
participants were instructed to try to relax 
during the resting state and informed about 
the arithmetic task. The same participants 
were also asked to mentally count without 
speaking or using finger move- ments, 
accurately and quickly, at the pace they had 
set. After 3 minutes of adaptation to the 
experimental conditions, the resting state 
EEG recording was made with eyes closed (in 
the next 3 minutes). Then, the participants 
performed a mental arithmetic task - serial 
subtraction - for 4 minutes.

At the end, the participants were divided 
into two groups: i) Group ”A” (24 subjects) 
with good quality counting (average number 
of operations per 4 minutes = 21) and ii) 
Group ”B” (12 subjects) with poor quality 
count (average number of operations per 4 
minutes = 7).
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In the present study, we explore the time 
series of 5 active EEG channels located in 
the regions: a) frontal - Af3(7) and Af4(9), b) 
central - Cz(2) and c) parietal - P 3(16) and 
P 4(18). The figures 1 and 2 denote the raw 
series. The files chosen in the database were: 
S01-S02-S03-S04 -S05.

DETRENDE FLUCTUATIONS ANALYSIS
Peng et al. (1994)[19] developed the 

DFA to analyze the existence of serial 
dependence, with the advantage of being 
also possible to be used in non-stationary 
data. Its main advantage is to avoid spurious 
detection of long-range dependence due to 
nonstationary data. For a given u (i) signal, 
the algorithm is described as follows:

Consider a correlated signal time series of 
u(i) (EEG signal), where i = 1, ···, N, where N 
is the total number of points in the time series. 
We integrate the sign u(i) and get y(k) = Σk

i=1 
[u(i) - <u>], where <u> is the mean of u(i).

The integrated signal y(k) is boxed (no 
overlapping) of the same size n (timescale). 
For each box of size n, we fit yn(k) on each box 
using a first-order linear regression, which 
represents the trend in the box. Every process 
is obtained by the method of least squares. 
The integrated series y(k) is subtracted from 
the adjusted series yn(k) in each size n of the 
box. Afterwards, for each box of size n, the 
root mean square will be calculated, that is,

The calculation is repeated for a wide range 
of scales, ie, 4 ≤ n ≤ N/4. Next, it is verified 
that the function FDFA characterizes a power 
law of the type FDFA ˜ nαDFA , where αDFA will 
be the long-range correlation indicator.

The interpretation of the relationship is 
given as follows: αDFA < 0.5 (anti-persistent 
signal), αDFA = 0.5 (non-correlated white 
noise), αDFA > 0.5 ( persistent signal - long 

range correlation), αDFA ‘ 1, (1/f noise), αDFA > 
1 (non-stationary) and αDFA ‘ 3/2 (Brownian 
noise).

At this stage, the DFA method allows 
detection of long-range correlations 
embedded in apparently non-stationary time 
series and also avoids spurious detection of 
apparent long-range correlations, which are 
an artifact of non- stationarity [21–24].

RMS FLOAT FUNCTION
The root mean square fluctuation 

function (rms) appears with the in- tention 
of measuring the fluctuation difference 
between two EEG channels. This function is 
an increment given to the DFA method and 
proved to be very useful in the application of 
electrophysiological signals, as it is possible 
to study how much two regions of the brain 
are associated to the same scale (temporal 
coherence) [1, 2, 24].

The procedure adopted in this research 
consists of calculating the DFA of two time 
series individually and then subtracting the 
results (see equation 2).

∆logFCz(2):xx = ∆logFDFACz(2 − ∆logFDFA−xx  (2)

From the function ∆logFCz(2):xx we can infer 
that the amplitude of the fluctuation relative 
to rms can be seen by three conditions:

•	 If ∆logFCz(2):xx > 0, then the 
amplitude of the fluctuation 
function rms around channel Cz(2) 
with respect to channel xx is greater;

•	 If ∆logFCz(2):xx = 0, then the 
amplitude of the fluctuation 
function rms around channel Cz(2) 
with respect to channel xx is zero;

•	 If ∆logFCz(2):xx < 0, then the 
amplitude of the fluctuation 
function rms around channel Cz(2) 
with respect to channel xx is smaller.
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Figure 1: Original EEG signal series. Channels Af3(7), Af4(9) located in the right/left frontal polar 
region of the brain, Cz(2) located in the central region and P 3(16) and P 4(18) located in the right/left 

parietal polar region of the brain. <url:https://physionet.org/content/eegmat/1.0.0/>.

Figure 2: Original EEG signal series. Channels A3f (7), Af4(9) located in the right/left frontal polar 
region of the brain, Cz(2) located in the central region and P 3(16) and P 4(18) located in the right/

left parietal polar region of the brain. <url:https://physionet.org/content/eegmat/1.0.0/>.
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RESULTS
In this investigation, time series were 

extracted with the following crite- ria: i) 
before (65.536 points - 131.068 seconds) and 
ii) during (30.515 points - 61.026 seconds) 
of the arithmetic activity. Both series were 
generated at a machine rate of 0.002 ms. 5 
EEG channels were selected, represented by 
5 ac- tive subjects. For analysis of the chosen 
channels, Af3(7) and Af4(9), frontal region, 
Cz(2), brain midpoint and P 3(16) and P 
4(18), region parietal, we calculated the DFA 
before and during the arithmetic test, here 
represented by the figures ref fig: dfaantes and 
ref fig: dfaduring.

For each channel (previous task), we 
calculate αDFA for two moments, n ≤ 60 
and n > 60 (30 seconds). The choice in the 
neighborhood of n refers to a change in 
behavior on the curve. At first, n ≤ 60 all 
channels presented αDFA above 1.0, while for 
n > 60, the channels presented αDFA between 
0.62 and 0.93, with emphasis on Af3(7) of 
subjects S04 and S05, both with αDFA greater 
than 1.0 (αDFAS04 = 1.12 and αDFAS05 = 1.01). 
(See table 1).

For each channel (during task), we also 
calculate αDFA for two moments, n ≤ 60 and 
n > 60. At first, n ≤ 60 all channels showed 
alphaDFA above 1.0, while for n > 60, the 
channels showed alphaDFA between 0.56 and 
0.99, with emphasis on Af3(7) and P 3(16) of 
subjects S02, Cz(2) and Af3(7) of subjects S04 , 
Cz(2) and Af3(7) of the subject S05. αDFA(S02) 
= 1.04 and 1.23, αDFA(S04) = 1.10 and αDFA(S05) 
= 1.43 and 1.02 (see table 1).

Then, the mean values αDFA (task before / 
during task) were calculated for n ≤ 60 and n > 
60. For before and during, n ≤ 60, all channels 
had αDFA > 1.0, only channel Cz(2) (during), n 
> 60, had αDFA > 1.0 (1.06) (See table 2).

For the purpose of temporal coherence, 
we analyze, through the function ∆logFDFA, 
equation ref 2, the effect of the amplitude of 

the fluctuation based on the channel Cz(2). 
See the figures ref fig: deltadfaantes, ref fig: 
deltadfaantes. To visualize these differences, 
we look at the scales of n, de- fined here as n < 
10 (5 seconds), 10 < n < 100, and n > 100 (50 
seconds).

For the purpose of temporal coherence, we 
analyze, through the function DeltalogFDFA, 
equation ref 2, the effect of the amplitude of 
the fluctuation based on the channel Cz(2). 
See the figures 5, 6.

In the task during the task, figure ref fig: 
graph5: in S01 Cz(2) − Af4(9) for n > 100 
presented negative difference, S02 for Cz(2) 
− P4(18) showed negative difference for 
all scales, S03 for n Cz(2) − Af4(9) showed 
negative difference. S04 and S05 in n > 100, 
Cz(2) P4(16) showed a negative difference.

In the task during the task, figure ref fig: 
graph6: at S01 for n > 100, Cz(2) − Af3(7) and 
Cz(2) − Af4(9) revealed negative difference, 
in S02 Cz(2) − P 3(16), revealed negative 
difference, S03 for n > 100, Cz(2) − Af4(9), 
showed negative difference, S04 for n < 100, 
negative difference for Cz(2) − Af4(18) and 
for n > 100, Cz(2) − Af4(9) showed negative 
difference and in S05 for n < 100, Cz(2) − 
P4(18) revealed negative difference.

Observations were also made about the 
average difference of the chan- nels Af3(7), 
Af4(9), P 3(16) and P 4(18) in relation to Cz(2), 
figure ref fig: graph7. For the previous task, 
on average, the difference in the fluc- tuation 
amplitude was positive. With an abbreviated 
negative difference to Cz(2) P 3(16), on 
large scales n > 100. As for the later task, the 
difference of the channel Cz(2) in relation 
to the others, through the root mean square 
fluctuation function (rms), showed a positive 
difference with the exception of Cz(2) − Af4(9) 
which revealed a negative difference for n > 
100.
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Figure 3: 001, 002, 003, 004 and 005 denote the research subjects.

Figure 4: 001, 002, 003, 004 and 005 denote the research subjects.
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αDFA (before) αDFA (during)

Subjects Channels n ≤ 60 n > 60 n ≤ 60 n > 60

Cz(2) 1.47 0.89 1.43 0.88

Af3(7) 1.42 0.93 1.38 0.81

S01 Af4(9) 1.42 0.84 1.43 0.73

P3(16) 1.48 0.66 1.47 0.56

P4(18) 1.45 0.72 1.45 0.70

Cz(2) 1.42 0.85 1.42 0.90

Af3(7) 1.26 0.87 1.28 1.04

S02 Af4(9) 1.37 0.88 1.40 0.90

P3(16) 1.42 0.78 1.40 1.23

P4(18) 1.41 0.86 1.42 0.89

Cz(2) 1.38 0.92 1.27 0.99

Af3(7) 1.36 0.91 1.23 0.98

S03 Af4(9) 1.41 0.89 1.38 0.98

P3(16) 1.45 0.84 1.40 0.87

P4(18) 1.43 0.87 1.41 0.88

Cz(2) 1.49 0.95 1.40 1.10

Af3(7) 1.51 1.12 1.47 1.10

S04 Af4(9) 1.52 0.71 1.52 0.81

P3(16) 1.51 0.64 1.44 0.78

P4(18) 1.56 0.65 1.49 0.82

Cz(2) 1.38 0.85 1.26 1.43

Af3(7) 1.48 1.01 1.46 1.02

S05 Af4(9) 1.46 0.82 1.45 0.90

P3(16) 1.54 0.62 1.53 0.67

P4(18) 1.51 0.88 1.45 0.89

Table 1: Values of αDF A for both moments (Before / During).  Represented by αDF A for n 60 and n >60 
associated with channels Af3(7), Af4(9) , Cz(2), P 3(16) and P 4(18). Subjects: 001, 002, 003, 004 and 005. 

n=60 corresponds to 30 seconds.

αDFA (before) αDFA (during)

Channels n ≤ 60 n > 60 n ≤ 60 n > 60

Cz(2) 1.43 0.89 1.36 1.06

Af3(7) 1.41 0.97 1.36 0.99

Mean Af4(9) 1.44 0.83 1.44 0.86

P3(16) 1.48 0.71 1.45 0.82

P4(18) 1.47 0.80 1.44 0.84

Table 2: Average values of αDF A. n = 60 corresponds to 30 seconds.
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Figure 5: Difference in amplitude of fluctuation between channels via ∆logFDF A function for task before.

Figure 6: Difference in amplitude of fluctuation between channels via ∆logFDF A function for task during.

Figure 7: Curves generated for before and during. Average value.
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CONCLUSION
We studied the behavior of EEG signals in 

5 individuals who perform arithmetic tasks 
at two moments, before and during, from the 
time series of 5 active EEG channels located in 
the regions: frontal - Af3(7) and Af4(9), central 
- Cz(2) and parietal - P 3(16) and P 4(18) of 
the brain.

Initially, we investigate the autocorrelation 
exponent αDFA for two scale values, n ≤ 60 
and n > 60. For n ≤ 60, we find αDFA > 1.0, 
character- istic behavior of non-stationarity 
with transition to Brownian noise. While for 
n > 60, we find αDFA varying between 0.62 
and 0.93, that is, persistent signal (long-range 
correlation).

Furthermore, we investigated the influence 
of the Cz(2) channel, located in the central 
region of the brain. We look at the before, 
during and also at the average. On average, 
we found that the central region, when com- 
pared to the others, frontal (Af3(7) - Af4(9)) 
and parietal (P 3(16) - P 4(18)), through of 
the root mean square fluctuation function 
(rms), showed a pos- itive difference for 
the amplitude of the fluctuation, with the 
exception of Cz(2) Af4(9), which showed a 
negative difference for n > 100. In terms of 
temporal coherence, for arithmetic activity, 
the central region, represented by the channel 
Cz(2), became more active when compared to 
the other re- gions.

We understand that approaches taken in 
this line are relevant, and that, above all, it can 
contribute to the aspect that brain coherence 
is not only seen in the frequency domain (Hz), 
but also in time through self-related processes.
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