

7° ENCONTRO NACIONAL DE APROVEITAMENTO DE RESÍDUOS NA CONSTRUÇÃO

7° ENCONTRO NACIONAL DE APROVEITAMENTO DE RESÍDUOS NA CONSTRUÇÃO

PROMOÇÃO

PATROCINADORES

ORGANIZAÇÃO

Editora chefe

Profª Drª Antonella Carvalho de Oliveira

Editora executiva

Natalia Oliveira

Assistente editorial

7.5515terrice editorial

Flávia Roberta Barão

Bibliotecária

Janaina Ramos 2021 by Atena Editora

Projeto gráfico Copyright © Atena Editora

Camila Alves de Cremo Copyright do texto © 2021 Os autores

Imagens da capa Copyright da edição © 2021 Atena Editora

Agência Preview - Banco de Imagens Direitos para esta edição cedidos à Atena

Edição de arte Editora pelos autores.

Silvia Trein Heimfarth Dapper Open access publication by Atena Editora

Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição Creative Commons. Atribuição-Não-Comercial-NãoDerivativos 4.0 Internacional (CC BY-NC-ND 4.0).

O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores, inclusive não representam necessariamente a posição oficial da Atena Editora. Permitido o *download* da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.

Todos os manuscritos foram previamente submetidos à avaliação cega pelos pares, membros do Conselho Editorial desta Editora, tendo sido aprovados para a publicação com base em critérios de neutralidade e imparcialidade acadêmica.

A Atena Editora é comprometida em garantir a integridade editorial em todas as etapas do processo de publicação, evitando plágio, dados ou resultados fraudulentos e impedindo que interesses financeiros comprometam os padrões éticos da publicação. Situações suspeitas de má conduta científica serão investigadas sob o mais alto padrão de rigor acadêmico e ético.

Conselho Editorial

Ciências Agrárias e Multidisciplinar

Prof. Dr. Alexandre Igor Azevedo Pereira – Instituto Federal Goiano

Prof. Dr. Arinaldo Pereira da Silva – Universidade Federal do Sul e Sudeste do Pará

Prof. Dr. Antonio Pasqualetto – Pontifícia Universidade Católica de Goiás

Prof[®] Dr[®] Carla Cristina Bauermann Brasil – Universidade Federal de Santa Maria

Prof. Dr. Cleberton Correia Santos – Universidade Federal da Grande Dourados

Profª Drª Diocléa Almeida Seabra Silva – Universidade Federal Rural da Amazônia

Prof. Dr. Écio Souza Diniz – Universidade Federal de Viçosa

Prof. Dr. Fábio Steiner – Universidade Estadual de Mato Grosso do Sul

Prof. Dr. Fágner Cavalcante Patrocínio dos Santos – Universidade Federal do Ceará

Profª Drª Girlene Santos de Souza – Universidade Federal do Recôncavo da Bahia

Prof. Dr. Jael Soares Batista – Universidade Federal Rural do Semi-Árido

Prof. Dr. Jayme Augusto Peres - Universidade Estadual do Centro-Oeste

Prof. Dr. Júlio César Ribeiro – Universidade Federal Rural do Rio de Janeiro

Profª Drª Lina Raquel Santos Araújo – Universidade Estadual do Ceará

Prof. Dr. Pedro Manuel Villa – Universidade Federal de Viçosa

Profª Drª Raissa Rachel Salustriano da Silva Matos – Universidade Federal do Maranhão

Prof. Dr. Ronilson Freitas de Souza – Universidade do Estado do Pará

Prof^a Dr^a Talita de Santos Matos – Universidade Federal Rural do Rio de Janeiro

Prof. Dr. Tiago da Silva Teófilo – Universidade Federal Rural do Semi-Árido

Prof. Dr. Valdemar Antonio Paffaro Junior – Universidade Federal de Alfenas

7º Encontro Nacional de Aproveitamento de Resíduos na Construção

Diagramação: Camila Alves de Cremo **Indexação:** Gabriel Motomu Teshima

Revisão: Os autores

Dados Internacionais de Catalogação na Publicação (CIP)

S495 7º Encontro nacional de aproveitamento de resíduos na construção / Organizadores Luciana Cordeiro, Sofia Bessa, Ángela Borges Masuero, et al. – Ponta Grossa -PR: Atena, 2021.

> Outros organizadores Daniel Tregnago Pagnussat Denise Carpena Coitinho Dal Molin Lais Zucchetti Silvia Trein Heimfarth Dapper Rosana Dal Molin Fernanda Lamego Guerra Caroline Giordani lago Lopes dos Santos Maria Fernanda Menna Barreto Maxwell Klein Degen Natália dos Santos Petry Rafaela Falcão Socoloski Roberta Picanco Casaril Aline Zini Jéssica Deise Bersch Thainá Yasmin Dessuy Thaís do Socorro Matos da Silva

Formato: PDF

Requisitos de sistema: Adobe Acrobat Reader

Modo de acesso: World Wide Web

Inclui bibliografia

ISBN 978-65-5983-681-9

DOI: https://doi.org/10.22533/at.ed.819210811

1. Construção civil. 2. Preservação ambiental. 3. Redução de impactos e o reaproveitamento de resíduos. I. Cordeiro, Luciana (Organizadora). II. Bessa, Sofia (Organizadora). III. Masuero, Angela Borges (Organizadora). IV. Título.

CDD 690

Elaborado por Bibliotecária Janaina Ramos - CRB-8/9166

Atena Editora

Ponta Grossa – Paraná – Brasil Telefone: +55 (42) 3323-5493 www.atenaeditora.com.br contato@atenaeditora.com.br

Declaração dos autores

Os autores desta obra: 1. Atestam não possuir qualquer interesse comercial que constitua um conflito de interesses em relação ao artigo científico publicado; 2. Declaram que participaram ativamente da construção dos respectivos manuscritos, preferencialmente na: a) Concepção do estudo, e/ou aquisição de dados, e/ou análise e interpretação de dados; b) Elaboração do artigo ou revisão com vistas a tornar o material intelectualmente releyante; c) Aprovação final do manuscrito para submissão.; 3. Certificam que os artigos científicos publicados estão completamente isentos de dados e/ou resultados fraudulentos; 4. Confirmam a citação e a referêncja correta de todos os dados e de interpretações de dados de outras pesquisas; 5. Reconhecem terem informado todas as fontes de financiamento recebidas para a consecução da pesquisa; 6. Autorizam a edição da obra, que incluem os registros de ficha catalográfica, ISBN, DOI e demais indexadores, projeto visual e criação de capa, diagramação de miolo, assim como lançamento e divulgação da mesma conforme critérios da Atena Editora.

Declaração da editora

A Atena Editora declara, para os devidos fins de direito, que: 1. A presente publicação constitui apenas transferência temporária dos direitos autorais, direito sobre a publicação, inclusive não constitui responsabilidade solidária na criação dos manuscritos publicados, nos termos previstos na Lei sobre direitos autorais (Lei 9610/98), no art. 184 do Código penal e no art. 927 do Código Civil; 2. Autoriza e incentiva os autores a assinarem contratos com repositórios institucionais, com fins exclusivos de divulgação da obra, desde que com o devido reconhecimento de autoria e edição e sem qualquer finalidade comercial; 3. Todos os e-book são open acçess, desta forma não os comercializa em seu site, sites parceiros, plataformas de e-commerce, ou qualquer outro meio virtual ou físico, portanto, está isenta de repasses de direitos autorais aos autores; 4. Todos os membros do conselho editorial são doutores e vinculados a instituições de ensino superior públicas, conforme recomendação da CAPES para obtenção do Qualis livro; 5. Não cede, comercializa ou autoriza a utilização dos nomes e e-mails dos autores, bem como nenhum outro dado dos mesmos, para qualquer finalidade que não o escopo da divulgação desta obra.

Apresentação

Um dos grandes desafios do setor da construção civil é a busca pela redução de resíduos oriundos dos mais diversos processos da produção industrial. Desta forma, é estimulada, no âmbito científico, a busca por alternativas que visam o reaproveitamento desses resíduos como matéria-prima na construção. Aliado a esta ideia, o 7º Encontro Nacional de Aproveitamento de Resíduos na Construção (ENARC) é um evento que visa incentivar a divulgação e discussão de ideias que possam embasar e desenvolver o setor da construção, levando em conta a ótica de preservação ambiental, redução de impactos e o reaproveitamento de resíduos.

Agradecimentos

Ao CNPg - Conselho Nacional de Desenvolvimento Científico e Tecnológico e ao Grupo FV, pelo apoio financeiro.

À ANTAC - Associação Nacional de Tecnologia do Ambiente Construído, pelo apoio institucional.

À UFRGS - Universidade Federal do Rio Grande do Sul, NORIE - Núcleo Orientado para Inovação da Edificação, PPGCI - Programa de Pós-Graduação em Engenharia Civil: Construção e Infraestrutura e LAMTAC - Laboratório de Materiais e Tecnologia do Ambiente Construído, pela organização.

Ao Sinduscon-RS, pelo apoio e divulgação.

Aos autores, pela divulgação das pesquisas e à comissão científica pela sua avaliação.

A todos os participantes, pelas suas contribuições, presenças e interações.

Nosso muito obrigado a todos.

Comissão organizadora local

Profa. Dra. Angela Borges Masuero (UFRGS) - Comissão coordenadora

Prof. Dr. Daniel Tregnago Pagnussat (UFRGS) - Comissão coordenadora

Profa. Dra. Denise Dal Molin (UFRGS) -Comissão coordenadora

Profa. Dra. Lais Zucchetti (UFRGS) -Comissão coordenadora

Profa. Dra. Silvia Trein Heimfarth Dapper (PUCRS)

Rosana Dal Molin (ANTAC) - Secretária ANTAC

Fernanda Lamego Guerra (Pós-Doc NORIE/UFRGS)

Caroline Giordani (Doutoranda NORIE/UFRGS)

Deividi Maurente Gomes da Silva (Doutorando NORIE/UFRGS)

lago Lopes dos Santos (Doutorando NORIE/UFRGS)

Maria Fernanda Menna Barreto (Doutoranda NORIE/UFRGS)

Maxwell Klein Degen (Doutorando NORIE/UFRGS)

Natália dos Santos Petry (Doutoranda NORIE/UFRGS)

Rafaela Falcão Socoloski (Doutoranda NORIE/UFRGS)

Roberta Picanço Casaril (Doutoranda NORIE/UFRGS)

Aline Zini (Mestranda NORIE/UFRGS)

Jéssica Deise Bersch (Mestranda NORIE/UFRGS)

Thainá Yasmin Dessuy (Mestranda NORIE/UFRGS)

Thaís do Socorro Matos da Silva (Mestranda NORIE/UFRGS)

Comitê científico

Profa. Luciana Cordeiro (UFPA) – Comissão coordenadora

Profa. Sofia Bessa (UFMG) – Comissão coordenadora

Revisores

Abrahão Bernardo Rohden (FURB)

Adeildo Cabral (IFCE)

Adriana Gumieri (UFMG)

Aline Barboza (UFAL)

Ana Paula Maran (UFSM)

Ana Paula Milani (UFMS)

Anderson Muller (IFSC)

Andrea Franco (UFMG)

Ariane P. Rubin (UFSC)

Carina Stolz (FEEVALE)

Carlos Eduardo Marmorato (UNICAMP)

Cláudia Ruberg (UFPB)

Cláudio Kazmierczak (UNISINOS)

Dóris Bragança (UFRGS)

Edna Possan (UNILA)

Eduardo Grala (UFPel)

Eduardo Polesello (FEEVALE)

Elaine Antunes (UNESC)

Fabiano Pereira (UNESC)

Fabriccio Almeida (SENAI)

Feliciane Brehm (UNISINOS)

Felipe Moreira (UFPA)

Felipe Reis (IFPA)

Fernanda Costa (UFRB)

Fernando Almeida (UFMG)

Fernando José (UFMG)

Geilma Vieira (UFES)

Giselle Reis (SERG/RS)

Glaucinei Correa (UFMG)

Guilherme Brigolini (UFOP)

Guilherme Cordeiro (UENF)

Isaura Paes (UFPA)

Janaíde Rocha (UFSC)

Jardel Gonçalves (UFBA)

João Adriano Rossignolo (USP)

Juliana Moretti (UNIFESP)

Luciana Cordeiro (UFPA)

Lucimara Leal (IFPA)

Luiz Maurício Maués (UFPA)

Luizmar Lopes (UPF)

Marcelo Massulo (UFPA)

Marcelo Picanço (UFPA)

Márcia França (UFMG)

Maria Teresa Aguilar (UFMG)

Marlon Longhi (UFRGS)

Mauricio Pina (UFPA)

Maurilio Pimentel (UFPA)

Mirna Gobbi (PROARQ/UFRJ)

Mônica Leite (UEFS)

Muriel Froener (UCSul)

Patrícia Chaves (IFPA)

Patrícia Lovato (UPF)

Paulo Gomes (UFAL)

Rafael Mascolo (UNIVATES)

Ricardo Girardi (PUCRS)

Richard Lermen (IMED)

Risete Braga (UFPA)

Robson Fernandes (UFPA)

Rodrigo Silva (IMED)

Sabino Alves (UNIFESSPA)

Sandra Oda (UFRJ)

Sofia Bessa (UFMG)

Talita Miranda (UFMG)

Teresa Barbosa (UFJF)

Thiago Braga (UFPA)

Thiago Melo Grabois (UFRJ)

White dos Santos (UFMG)

SUMÁRIO

AREA 1 - AVALIAÇÃO DO DESEMPENHO DE MATERIAIS, COMPONENTES, ELEMENTOS E SISTEMAS COM APLICAÇÃO DE RESÍDUOS
CAPÍTULO 11
PREVISÃO DO IMPACTO DA ADIÇÃO DE RESÍDUO DE BORRACHA DE PNEU NO DESEMPENHO MECÂNICO DO CONCRETO
MEDEIROS; Victor Amadeu Sant' Anna; CRUZ; Bruna Ramos de Souza; ALCAZAS; Juliana Carrasco; MILANI; Ana Paula da Silva
€ https://doi.org/10.22533/at.ed.8192108111
CAPÍTULO 2
PROPRIEDADES REOLÓGICAS E HIDRATAÇÃO DE PASTAS DE CIMENTOS TERNÁRIOS CONTENDO RESÍDUOS DE MÁRMORE, PORCELANATO, BLOCO CERÂMICO E FOSFOGESSO
COSTA; Ana Rita Damasceno; GONÇALVES; Jardel Pereira
https://doi.org/10.22533/at.ed.8192108112
CAPÍTULO 317
OTIMIZAÇÃO DOS PARÂMETROS DE MOAGEM DE RESÍDUOS SÓLIDOS PARA APLICAÇÃO COMO MATERIAIS CIMENTÍCIOS SUPLEMENTARES
COSTA; Ana Rita Damasceno; GONÇALVES; Jardel Pereira
https://doi.org/10.22533/at.ed.8192108113
CAPÍTULO 426
EFEITO DA SÍLICA ATIVA NA MITIGAÇÃO DA REAÇÃO ÁLCALI-AGREGADO ATRAVÉS DO MÉTODO ACELERADO EM BARRAS DE ARGAMASSAS
CRUZ DA SILVA ARAUJO; Juliene; PEREIRA BONFIM; Francirene; PEREIRA GOUVEIA; Fernanda
6 https://doi.org/10.22533/at.ed.8192108114
CAPÍTULO 533
ESTUDO DA INFLUÊNCIA DA MOAGEM DO RESÍDUO DE FCC NA HIDRATAÇÃO INICIAI DO CIMENTO POR CALORIMETRIA ISOTÉRMICA
OLIVEIRA; Josinorma Silva de; ANDRADE; Heloysa Martins Carvalho, GONÇALVES; Jardel Pereira
€ https://doi.org/10.22533/at.ed.8192108115

CAPITULO 642
MÉTODO DE RIETVELD PARA QUANTIFICAÇÃO DE FASES EM RESÍDUOS PARA USO COMO MATERIAIS CIMENTÍCIOS SUPLEMENTARES (MCS)
MATOS; Samile Raiza Carvalho; COSTA; Ana Rita Damasceno; OLIVEIRA; Josinorma Silva de; MACIEL; Kuelson Rândello Dantas; GONÇALVES; Jardel Pereira
https://doi.org/10.22533/at.ed.8192108116
CAPÍTULO 751
AVALIAÇÃO DA CONDUTIVIDADE HIDRÁULICA DE MISTURAS SOLO-RESÍDUO VISANDO A UTILIZAÇÃO COMO BARREIRAS IMPERMEÁVEIS EM ATERROS SANITÁRIOS
BRESSAN JUNIOR; José C.; ZAMPIERI; Lucas Q.; NIENOV, Fabiano A.; LUVIZÃO, Gislaine
https://doi.org/10.22533/at.ed.8192108117
CAPÍTULO 858
NEUTRALIZAÇÃO DO FOSFOGESSO COM CAL E A SUA INFLUÊNCIA NA HIDRATAÇÃO E NO DESEMPENHO MECÂNICO DE MATRIZES CIMENTÍCIAS
ANDRADE NETO; José S.; BERSCH; Jéssica D.; SILVA, Thaís S. M.; RODRÍGUEZ, Erich D.; SUZUKI, Seiiti; KIRCHHEIM; Ana Paula
€ https://doi.org/10.22533/at.ed.8192108118
CAPÍTULO 966
INFLUÊNCIA DO RESÍDUO DE CERÂMICA VERMELHA EM ARGAMASSAS NA SUBSTITUIÇÃO
PARCIAL DO AGREGADO OU DO CIMENTO
PARCIAL DO AGREGADO OU DO CIMENTO TORRES; Ariela da Silva; PINZ; Francielli Priebbernow; PALIGA; Charlei Marcelo
TORRES; Ariela da Silva; PINZ; Francielli Priebbernow; PALIGA; Charlei Marcelo
TORRES; Ariela da Silva; PINZ; Francielli Priebbernow; PALIGA; Charlei Marcelo https://doi.org/10.22533/at.ed.8192108119
TORRES; Ariela da Silva; PINZ; Francielli Priebbernow; PALIGA; Charlei Marcelo https://doi.org/10.22533/at.ed.8192108119 CAPÍTULO 10
TORRES; Ariela da Silva; PINZ; Francielli Priebbernow; PALIGA; Charlei Marcelo https://doi.org/10.22533/at.ed.8192108119 CAPÍTULO 10
TORRES; Ariela da Silva; PINZ; Francielli Priebbernow; PALIGA; Charlei Marcelo thtps://doi.org/10.22533/at.ed.8192108119 CAPÍTULO 10
TORRES; Ariela da Silva; PINZ; Francielli Priebbernow; PALIGA; Charlei Marcelo https://doi.org/10.22533/at.ed.8192108119 CAPÍTULO 10

TORRES; Ariela da Silva

ttps://doi.org/10.22533/at.ed.81921081111
CAPÍTULO 1288
INFLUÊNCIA DA GRANULOMETRIA DO ARGILITO NAS PROPRIEDADES REOLÓGICAS DE MATRIZES CIMENTÍCIAS
SILVA; Thaís; BERSCH; Jéssica; ANDRADE NETO; José; MASUERO; Angela; DAL MOLIN; Denise
6 https://doi.org/10.22533/at.ed.81921081112
CAPÍTULO 1395
EFEITO DA ADIÇÃO DE CINZA DE OLARIA NO ÍNDICE DE SUPORTE CALIFÓRNIA DE SOLO ARGILOSO DA REGIÃO DE GUARAPUAVA-PR
KADLOBICKI; Lucas; TRENTO; Vanderlei; PAULINO; Rafaella Salvador; DA SILVA; Sauana Centenaro
ttps://doi.org/10.22533/at.ed.81921081113
CAPÍTULO 14103
ANÁLISE CRÍTICA DOS MÉTODOS DE SEPARAÇÃO DE AGREGADOS DE RESÍDUOS DE CONSTRUÇÃO E DEMOLIÇÃO (RCD) BASEADA EM CRITÉRIOS DE DESEMPENHO DE CONCRETOS RECICLADOS
FERREIRA; Guilherme de Andrades; NEUMANN; Isadora Sampaio; SANTOS; Iago Lopes; DAL MOLIN; Denise Carpena Coitinho
dips://doi.org/10.22533/at.ed.81921081114
CAPÍTULO 15111
CINZA DO BAGAÇO DA CANA-DE-AÇÚCAR DE ELEVADA REATIVIDADE PRODUZIDA VIA FRACIONAMENTO DENSIMÉTRICO E MOAGEM ULTRAFINA
LINHARES, Beatriz Dias Fernandes; LEMOS, Mônica Nunes; CORDEIRO, Guilherme Chagas
6 https://doi.org/10.22533/at.ed.81921081115
CAPÍTULO 16119
GEOPOLÍMERO A BASE DE METACAULIM: MEDIDAS DE IMPEDÂNCIA ELETROQUÍMICA E RESISTÊNCIA À COMPRESSÃO
COSTA, Rayara Pinto; PY, Lucas Goldenberg; SACARDO, Lucas Eduardo Perin; LONGHI, Marlon Augusto; KIRCHHEIM, Ana Paula
6 https://doi.org/10.22533/at.ed.81921081116

CAPÍTULO 17127
AVALIAÇÃO DAS PROPRIEDADES NO ESTADO FRESCO E ENDURECIDO DE ARGAMASSAS PRODUZIDAS COM RESÍDUOS DE POLIPROPILENO TRITURADO
GARCIA; Adson de Sousa; SILVA; Barbara Cristina Soares; JÚNIOR; Paulo Sergio Barreiros de Leão; SOUZA; Grazielle Tigre de
€ https://doi.org/10.22533/at.ed.81921081117
CAPÍTULO 18
ANÁLISE EXPERIMENTAL DO DESEMPENHO DE ARGAMASSAS UTILIZANDO RESÍDUOS DA INDÚSTRIA DE CELULOSE (DREGS E GRITS)
ALVARENGA; Bruno Medeiros de; FALCÃO; Juliane Rodrigues; TESSARO; Alessandra Buss; MATTOS; Flávia Costa de
€ https://doi.org/10.22533/at.ed.81921081118
CAPÍTULO 19142
CARBONATAÇÃO DE ARGAMASSAS MISTAS PRODUZIDAS COM REJEITO DE MINÉRIO DE FERRO
HERMENEGILDO, Gabriela C.; CARNEIRO, Gisele O. P.; NOGUEIRA, Júlia A. W.; BEZERRA, Augusto C., BESSA, Sofia A. L.
o https://doi.org/10.22533/at.ed.81921081119
CAPÍTULO 20150
EFEITO DE UMA RESINA POLIMÉRICA NA ABSORÇÃO DE PEDRAS ARTIFICIAIS DE CALCÁRIO LAMINADO
BEZERRA; Ana Karoliny Lemos; SILVA; Leonária Araújo; ARAÚJO; Lucas Benício Rodrigues; CABRAL; Antonio Eduardo Bezerra
€ https://doi.org/10.22533/at.ed.81921081120
CAPÍTULO 21
CARACTERIZAÇÃO DE CINZA DE CASCA DE ARROZ (CCA) GERADA EM LEITO FLUIDIZADO
PAGLIARIN; Karine; JORDANI; Bárbara; KOPPE; Angélica
① https://doi.org/10.22533/at.ed.81921081121
CAPÍTULO 22166
INFLUÊNCIA DA ADIÇÃO DE SUBPRODUTOS NA DISPERSÃO DE PARTÍCULAS DE CIMENTO
MARTINS; Julia; ROCHA; Janaíde
thttps://doi.org/10.22533/at.ed.81921081122

CAPITULO 23173
COMPÓSITO CIMENTÍCIO COM GRÃOS DE POLIPROPILENO: RESISTÊNCIA À COMPRESSÃO AXIAL E À FLEXÃO
COELHO, Rivaldo Teodoro; DUCATTI, Vitor Antonio; SALADO, Gerusa de Cássia
ttps://doi.org/10.22533/at.ed.81921081123
CAPÍTULO 24
COMPORTAMENTO DE CONCRETOS COM BAIXO TEOR DE CASCA DE ARROZ COMO BIOAGREGADO
AMANTINO, Guilherme; TIECHER, Francieli; HASPARYK, Nicole; TOLEDO, Romildo
ttps://doi.org/10.22533/at.ed.81921081124
CAPÍTULO 25187
ANÁLISE DA DURABILIDADE DE ARGAMASSAS COM SUBSTITUIÇÃO DO CIMENTO POR RESÍDUO DE MARMORARIA EM DIFERENTES FATORES ÁGUA CIMENTO
ALMADA, Bruna S.; SANTOS, White J.
f https://doi.org/10.22533/at.ed.81921081125
CAPÍTULO 26195
ANÁLISE DA SUBSTITUIÇÃO DO CIMENTO POR RESÍDUO DE MARMORARIA COM FIXAÇÃO DA TRABALHABILIDADE PELO USO DE ADITIVOS PLASTIFICANTE
ALMADA, Bruna S.; SANTOS, White J.
doi https://doi.org/10.22533/at.ed.81921081126
CAPÍTULO 27202
ANÁLISE DA APLICABILIDADE DO RESÍDUO DE CERÂMICA VERMELHA NA PAVIMENTAÇÃO
SANTOS, Marianny Viana dos; SOUZA, Wana Maria de; RIBEIRO, Antonio Junior Alves
d https://doi.org/10.22533/at.ed.81921081127
CAPÍTULO 28208
RESÍDUO DE CONCRETO COMO SUBSTITUTO AO CIMENTO: AVALIAÇÃO DA RESISTÊNCIA À COMPRESSÃO E DAS EMISSÕES
OLIVEIRA; Dayana Ruth Bola; LEITE; Gabriela; POSSAN; Edna; MARQUES FILHO; José
€ https://doi.org/10.22533/at.ed.81921081128

ÁREA 2 - DESENVOLVIMENTO DE PRODUTOS COM RESÍDUOS
CAPÍTULO 29216
USO DO RESÍDUO DA NEFELINA EM SUBSTITUIÇÃO AO AGREGADO DA ARGAMASSA DE ASSENTAMENTO
ROSA; Laura Pereira; HALTIERY; Diego Santos; PEREIRA; Fabiano Raupp; ANDRADE; Lucimara Aparecida Schambeck
6 https://doi.org/10.22533/at.ed.81921081129
CAPÍTULO 30
INFLUÊNCIA DA MAGNETITA E DA BARITA EM MATRIZES CIMENTÍCIAS: UMA REVISÃO SISTEMÁTICA DA LITERATURA
MAZZARO; Filipe S.; ALVES; Jordane G.S.; ALMEIDA; Fernando C.R.
6 https://doi.org/10.22533/at.ed.81921081130
CAPÍTULO 31232
UTILIZAÇÃO DE CINZA PESADA DE BIOMASSA DE PINUS TAEDA COMO SUBSTITUIÇÃO PARCIAL DO CIMENTO PORTLAND NO CONCRETO CONVENCIONAL
BARCAROLI; Bruno Crimarosti; SALAMONI; Natália; ROHDEN; Abrahão Bernardo
ttps://doi.org/10.22533/at.ed.81921081131
CAPÍTULO 32240
ANÁLISE DA POTENCIALIDADE DO USO DE RESÍDUOS DE CONSTRUÇÃO E DEMOLIÇÃO COMO AGREGADO GRAÚDO NA PRODUÇÃO DE BLOCOS PARA PAVIMENTOS INTERTRAVADOS DE CONCRETO
REUPS; José Eduardo Angeli; NIEMCZEWSKI; Juliana Alves Lima Senisse
ttps://doi.org/10.22533/at.ed.81921081132
CAPÍTULO 33248
AVALIAÇÃO DO USO DO PÓ DE RETIFICA PARA APLICAÇÃO EM CAMADAS DE PAVIMENTAÇÃO
AVERNA; Larissa Bertho; MATTEDI; Carolina Vieira; DE ABREU; Victor Barreto; CONTINI; Paulo Victo Matiello; MARIANI; Bruna Bueno
ttps://doi.org/10.22533/at.ed.81921081133
CAPÍTULO 34256
CRIAÇÃO DE REVESTIMENTOS BIOINSPIRADOS A PARTIR DOS RESÍDUOS DA CONSTRUÇÃO
MENEGUEL, Carolina Frota; DAPPER, Silvia Trein Heimfarth

€ https://doi.org/10.22533/at.ed.81921081134
CAPÍTULO 35
ttps://doi.org/10.22533/at.ed.81921081135
CAPÍTULO 36272
REUTILIZAÇÃO DE AREIA DE FUNDIÇÃO EM ARGAMASSAS
MARAN, Ana PauLa; MENNA BARRETO, Maria Fernanda; MASUERO, Angela Borges; DAL MOLIN, Denise Carpena Coitinho
https://doi.org/10.22533/at.ed.81921081136
CAPÍTULO 37281
CINZAS DE BIOMASSA GERADAS NA AGROINDÚSTRIA DE MALTE: CARACTERIZAÇÃO E USO EM SUBSTITUIÇÃO AO AGREGADO MIÚDO EM ARGAMASSAS
DA SILVA; Sauana Centenaro; DA SILVA; Joaõ Adriano Godoy; PAULINO; Rafaella Salvador
o https://doi.org/10.22533/at.ed.81921081137
CAPÍTULO 38289
UTILIZAÇÃO DE AGREGADOS DE RCD EM SUBSTITUIÇÃO TOTAL AOS NATURAIS PARA PRODUÇÃO DE BLOCOS DE CONCRETOS ADENSADOS DE FORMA MANUAL E MECÂNICA
SARTORE; Igor Carlesso; PAULINO; Rafaella Salvador; TORALLES; Berenice Martins
6 https://doi.org/10.22533/at.ed.81921081138
CAPÍTULO 39297
INFLUÊNCIA DA SUBSTITUIÇÃO DA AREIA NATURAL POR PÓ DE PEDRA EM TUBOS DE CONCRETO
COLONETTI; Luís Gustavo Vieira; PIROLLA; Douglas Leffa; PIVA; Jorge Henrique; MACCARINI; Helena Somer; WANDERLIND; Augusto; ANTUNES; Elaine Guglielmi Pavei
6 https://doi.org/10.22533/at.ed.81921081139
CAPÍTULO 40305
PRODUÇÃO DE ARGAMASSAS COM SUBSTITUIÇÃO PARCIAL DE CIMENTO E AGREGADO POR CINZAS DE CARVÃO VAPOR
PADILHA; Lilian; PIROLLA; Douglas Leffa; PIVA; Jorge Henrique; SAVI; Aline Eyng; WANDERLIND; Augusto; ANTUNES; Elaine Guglielmi Pavei

mttps://doi.org/10.22533/at.ed.81921081140
CAPÍTULO 41312
ESTUDO DA INFLUÊNCIA DA SUBSTITUIÇÃO PARCIAL DO CIMENTO POR RESÍDUOS DE CONSTRUÇÃO CIVIL NA RESISTÊNCIA MECÂNICA À COMPRESSÃO AXIAL DE ARGAMASSAS MISTAS
SCHILLER; Ana Paula Sturbelle; PALIGA; Charlei Marcelo; TORRES; Ariela da Silva
ohttps://doi.org/10.22533/at.ed.81921081141
CAPÍTULO 42319
PAINÉIS AGLOMERADOS HOMOGÊNEOS DE MADEIRA PRODUZIDOS COM PINUS, PALHA DE MILHO, POLIETILENO TEREFTALATO E POLIURETANO DERIVADO DE ÓLEO DE MAMONA
SOUZA; Matheus; CAZELLA; Pedro H. S.; RODRIGUES; Felipe R.; PEROSSO; Marjorie B. S.; SILVA; Sérgio A. M.
https://doi.org/10.22533/at.ed.81921081142
CAPÍTULO 43327
ESTUDO DO EMPREGO DE AGREGADOS CERÂMICOS EM CONCRETO PERMEÁVEL
STRIEDER; Helena L.; DUTRA; Vanessa F. P.; GRAEFF; Ângela G.; MERTEN; Felipe R. M.
https://doi.org/10.22533/at.ed.81921081143
CAPÍTULO 44335
PRODUÇÃO DE PISOS INTERTRAVADOS EM ESCALA INDUSTRIAL COM A INCORPORAÇÃO DE AREIA DE FUNDIÇÃO
GHISLENI; Geisiele; LIMA; Geannina Terezinha dos Santos
do https://doi.org/10.22533/at.ed.81921081144
CAPÍTULO 45343
APLICAÇÃO DE RESÍDUOS DA REGIÃO AMAZÔNICA EM ÁLCALI-ATIVADOS VISANDO O SEU USO NA CONSTRUÇÃO CIVIL
RIBEIRO; Rafaela Cristina Alves; CAMPOS; Patrick Cordeiro; BRITO; Woshington da Silva; PICANÇO; Marcelo Souza; GOMES-PIMENTEL; Maurílio
ohttps://doi.org/10.22533/at.ed.81921081145
CAPÍTULO 46350
ESTUDO EXPERIMENTAL DE ARGAMASSAS COM RESÍDUO DE CINZA VOLANTE DE

BICA; Bruno O.; PADILHA; Francine; ROCHA; Janaíde; GLEIZE; Philippe
€ https://doi.org/10.22533/at.ed.81921081146
CAPÍTULO 47358
ANÁLISE DA SUBSTITUIÇÃO DO AGREGADO MIÚDO QUARTZOSO POR AGREGADO MIÚDO DE BRITAGEM DE ROCHA BASÁLTICA EM CONCRETO
WALKER; Wesley Ramon; MEINHART; Alice Helena; ARNOLD; Daiana Cristina Metz; DIAS; Letícia Andriolli
€ https://doi.org/10.22533/at.ed.81921081147
CAPÍTULO 48365
AVALIAÇÃO DO RESÍDUO DE ARENITO COMO AGREGADO MIÚDO EM MATRIZ DE ARGAMASSA
MARIO, Mauro; GIORDANI, Caroline; MASUERO, Angela Borges; DAL MOLIN, Denise Carpena Coitinho
€ https://doi.org/10.22533/at.ed.81921081148
CAPÍTULO 49373
O RESÍDUO DE NIÓBIO E SUAS POTENCIAIS APLICAÇÕES NA CONSTRUÇÃO CIVIL: UMA REVISÃO DA LITERATURA
ALVES; Jordane G.S.; MAZZARO; Filipe S.; ALMEIDA; Fernando C.R.
1 https://doi.org/10.22533/at.ed.81921081161
CAPÍTULO 50380
PAINÉIS DE PARTÍCULAS DE SUBPRODUTOS AGROINDUSTRIAIS PRODUZIDOS PARA NÚCLEO DE PAINEL SANDUÍCHE
PEREIRA; Alexandre Rosim; ROSSIGNOLO; João Adriano
ttps://doi.org/10.22533/at.ed.81921081150
ÁREA 3 - GESTÃO DE RESÍDUOS
CAPÍTULO 51388
IMPACTOS DA IMPLANTAÇÃO DA GESTÃO DE RESÍDUOS DA CONSTRUÇÃO CIVIL EM CAMPO GRANDE – MS
PUPIN; Nayara Severo; MAIA; Johnny Hebert de Oliveira; MILANI; Ana Paula da Silva
€ https://doi.org/10.22533/at.ed.81921081151

MINÉRIO DE CARVÃO EM SUBSTITUIÇÃO AO AGREGADO MIÚDO

CAPÍTULO 52395
O CICLO DA GESTÃO DE RESÍDUOS DA CONSTRUÇÃO CIVIL NA UFRGS
ANTUNES; Giselle Reis; RODRIGUES; Eveline Araujo; SIMONETTI; Camila
https://doi.org/10.22533/at.ed.81921081152
CAPÍTULO 53403
ANÁLISE SOBRE A GESTÃO DE RESÍDUOS DA CONSTRUÇÃO CIVIL NA CIDADE DE PORTO ALEGRE/RS
ROCHA, Paulyne Vaz; SOUZA; Ana Lilian Brock de; PETRY, Natália dos Santos
diphttps://doi.org/10.22533/at.ed.81921081153
CAPÍTULO 54412
ANÁLISE DO PLANO DE GESTÃO MUNICIPAL INTEGRADA DE RESÍDUOS SÓLIDOS DE RIO BRANCO – AC, SOB A ÓTICA DE GESTÃO DE RESÍDUOS DA CONSTRUÇÃO CIVIL
VIANA; Tiago H. da Costa; MONTEIRO; Késsio Raylen; SEGOBIA; Pedro Bomfim
diphttps://doi.org/10.22533/at.ed.81921081154
ÁREA 4 - ANÁLISE DA VIABILIDADE ECONÔMICA
CAPÍTULO 55420
VALORIZAÇÃO DE RESÍDUO AGROINDUSTRIAL COMO SUBSTITUIÇÃO PARCIAL DO CIMENTO PORTLAND EM FIBROCIMENTOS
BASSAN DE MORAES; Maria Júlia; SOARES TEIXEIRA; Ronaldo; PROENÇA DE ANDRADE; Maximiliano; MITSUUCHI TASHIMA; Mauro; ROSSIGNOLO; João
Adriano
di https://doi.org/10.22533/at.ed.81921081155
CAPÍTULO 56
PROJETO SARGOOD: VALORIZAÇÃO DO <i>SARGASSUM</i> NA CONSTRUÇÃO CIVIL
ROSSIGNOLO, João Adriano; BUENO, Cristiane; DURAN, Afonso Jose Felicio Peres; LYRA, Gabriela Pitolli; ASSUNÇÃO, Camila Cassola; GAVIOLI, Leticia Missiato; MORAES, Maria Julia Bassan; NASCIMENTO, João Lucas Silva
https://doi.org/10.22533/at.ed.81921081156
CAPÍTULO 57436
VALORIZAÇÃO DO CAULIM FLINT COMO MATERIAL CIMENTÍCIO SUPLEMENTAR (MCS)
MEDEIROS; Matheus Henrique Gomes de; MATOS; Samile Raiza Carvalho; DESSUY; Thainá Yasmin; MASUERO; Angela Borges; DAL MOLIN; Denise Carpena Coitinho
https://doi.org/10.22533/at.ed.81921081157

ÁREA 5 - AVALIAÇÃO AMBIENTAL E DO CICLO DE VIDA

CAPÍTULO 58443
AVALIAÇÃO DAS EMISSÕES DE ${\rm CO_2}$ DE PAVIMENTO DE CONCRETO PERMEÁVEL: COMPARAÇÃO ENTRE O USO DE AGREGADOS DE RCD E NATURAIS
CASARIN; Roberta P.; ARAGÃO; Lucas C.; ZAPPE; Anna Paula S.; THOMAS; Mauricio; PASSUELO; Ana Carolina B.
f) https://doi.org/10.22533/at.ed.81921081158
CAPÍTULO 59451
O IMPACTO AMBIENTAL DO APROVEITAMENTO DE RESÍDUOS NO SETOR DA CONSTRUÇÃO CIVIL: REVISÃO BIBLIOGRÁFICA SOB A VISÃO DO CICLO DE VIDA
KONZEN; Bárbara Anne Dalla Vechia; PEREIRA; Andréa Franco
figure 1.00 https://doi.org/10.22533/at.ed.81921081159
CAPÍTULO 60462
PEGADA DE CARBONO DE CONCRETOS AUTOADENSÁVEIS PRODUZIDOS COM FINOS DE RESÍDUOS DA CONSTRUÇÃO CIVIL
FERREIRA; Luiza de Souza; DESSUY; Thainá Yasmin; GLITZEHNIRN; Claudia; PASSUELLO; Ana; MASUERO; Angela Borges
f) https://doi.org/10.22533/at.ed.81921081149
CAPÍTULO 61468
AVALIAÇÃO DOS PARAMETROS SUSTENTÁVEIS PARA PAVERS CONFECCIONADOS COM RESÍDUOS INDUSTRIAIS
ALTOÉ; Silvia Paula Sossai; GOÉS; Isadora; ROTTA; José Venancio Pinheiro; BORIN; Mateus Roberto
ttps://doi.org/10.22533/at.ed.81921081160

AVALIAÇÃO DAS EMISSÕES DE CO₂ DE PAVIMENTO DE CONCRETO PERMEÁVEL: COMPARAÇÃO ENTRE O USO DE AGREGADOS DE RCD E NATURAIS

https://doi.org/10.22533/at.ed.81921081158

CASARIN; ROBERTA P.¹; ARAGÃO; LUCAS C.¹; ZAPPE; ANNA PAULA S.¹; THOMAS; MAURICIO¹;
PASSUELO; ANA CAROLINA B.¹

¹UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL E-MAIL DO AUTOR CORRESPONDENTE: ROBERTAPCASARIN@GMAIL.COM

RESUMO: O presente trabalho é um estudo de caso de pavimento de concreto permeável destinado a estacionamento construído para a aplicação da metodologia de realização de inventário de emissões de CO_2 . O objetivo foi comparar dois métodos construtivos desse pavimento: um com agregado reciclado proveniente de corpos de prova da construção de uma ponte e outro com a hipótese de utilização de agregado natural de pedreira. Apontase que o uso de agregados naturais nesse tipo de pavimento aumenta o impacto nas emissões de CO_2 quando em comparação ao uso dos agregados reciclados, porém essa diferença torna-se diminuta ao considerar emissões do cimento.

PALAVRAS-CHAVES: Emissões de CO₂; agregados naturais; agregados reciclados; concreto permeável; impacto ambiental.

ABSTRACT: This study uses the CO₂ inventory emission methodology in the product and construction phases to compare two construction methods of permeable concrete pavement: the first one using recycled aggregate originated from specimens of the construction of a bridge, and the other, (as a hypothesis) if natural aggregate from a quarry was used. It is pointed that the use of natural aggregates in this type of pavement increases the CO₂ emission, when in comparison with the use of construction and demolition waste (CDW) aggregates. Nevertheless, that difference is low when the high emissions by cement are considered.

KEYWORDS: Permeable concrete; aggregate; CDW; environmental impact.

1 | INTRODUÇÃO

A crescente taxa de urbanização das cidades traz consigo o problema de ocupação de solos drenantes por materiais que tornam a superfície impermeável, aumentando a possibilidade de inundações e podendo provocar, no caso dos pavimentos, o efeito da aquaplanagem. Com a finalidade de minimizar estes efeitos, foi desenvolvido o concreto com a ausência de partículas finas em sua composição, permitindo a passagem de água até a profundidade da camada de base ou sub-base (1, 2, 3). O pavimento permeável, apesar de substituir a estrutura de pavimento convencional, pode ser aplicado apenas para tráfego de baixa velocidade, veículos leves e caminhões com cargas não pesadas, sendo assim mais indicado para estacionamentos (4, 5, 6). Isso se dá pelo fato de que a ausência dos finos na composição do pavimento reduz a capacidade deste em resistir a solicitações mais pesadas. Em contrapartida, deve-se buscar um equilíbrio entre

resistência e permeabilidade (7).

É importante ressaltar que os pavimentos drenantes devem corresponder os prérequisitos mínimos estabelecidos pela norma NBR 16416 (ABNT, 2015)⁽⁸⁾ na questão de permeabilidade e resistência à compressão. Sendo assim, conforme a norma, para esse tipo de concreto poroso usado para pavimentação é necessário um maior consumo de cimento quando se comparando com o pavimento de concreto convencional. Segundo Caldas *et al.* (2017) ⁽⁹⁾, outra questão peculiar em relação ao concreto permeável é a sua baixa relação água/cimento e o fato de não apresentar boa manutenibilidade no estado plástico, fazendo com que se perca rapidamente a capacidade de trabalhabilidade.

De acordo com este cenário, este estudo possui o objetivo de avaliar comparativamente os impactos ambientais causados pela produção de dois tipos de pavimentos permeáveis: o primeiro é o do pavimento construído, que foi constituído com agregado de resíduo de construção e demolição (RCD) obtido do processo de britagem de corpos de prova de concreto cilíndricos moldados em obra de construção de ponte; enquanto o outro tipo considerou a hipótese de que a construção do mesmo pavimento foi feita com agregado natural, extraído e britado dentro de pedreira. A principal motivação do trabalho foi avaliar até que ponto o material reciclado apresenta menor impacto ambiental do que a extração do material virgem, considerando apenas as fases de produto e construção, (assumindo-se que nas fases de uso e fim de vida a manutenção e o descarte serão os mesmos para ambos os tipos de pavimento permeável).

2 | METODOLOGIA

A implementação da metodologia de análise de inventário de emissões de ${\rm CO}_2$ realizada neste estudo, baseada nas normas NBR 14040/14044 (ABNT, 2009) $^{(10)}$, foi dividida em quatro etapas: primeiramente a definição do objetivo e escopo; em segundo lugar foi realizada a análise do inventário; em seguida a quantificação dos impactos; e, por fim, a interpretação dos resultados.

2.1 Objetivo e escopo

Os objetivos do presente trabalho consistem em avaliar os impactos ambientais da fase de produto e construção de uma pista de estacionamento em concreto permeável produzido com 100% de agregado de concreto reciclado, através de ferramenta de avaliação do ciclo de vida, e comparar os impactos ambientais analisados com a construção de uma pista semelhante empregando apenas agregados naturais. As fases de uso, manutenção e fim de vida da estrutura não são consideradas, partindo-se do pressuposto que são bastante similares para qualquer das utilizações de pavimentos analisados, sejam com agregados de RCD ou naturais⁽¹¹⁾. Os limites do sistema, portanto, estão estabelecidos a partir da obtenção das matérias-primas (com transporte na região metrotopolitana de Porto Alegre até o local da obra) e fim na construção do pavimento (Figura 1).

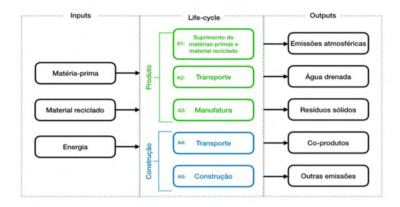


Figura 1 – Fronteiras do sistema: fases de produto (A1-A3) e de construção (A4 e A5)

Fonte: elaborado pelos autores

Com o intuito de identificar os impactos ambientais da pista de estacionamento de concreto permeável e compará-los com os impactos provocados por outros pavimentos, a unidade funcional estabelecida para a análise foi a de um metro linear de faixa de pista de rolamento de veículos, considerando que a largura total era de 3,5 m. A área total construída no estudo de caso foi de 3,5 m x 3,5 m, que é a faixa de concreto permeável com agregado reciclado construída no estudo de caso aqui analisado⁽¹¹⁾.

Para a avaliação desta unidade funcional foi considerado um sistema com subdivisões das camadas superiores do pavimento até as inferiores: a camada superficial e final de rolamento de concreto permeável (subsistema 1), seguida de base de brita tipo 1 com 30% de poros (subsistema 2), e camada de proteção constituída de areia (subsistema 3), que serve para não perfurar a última camada. Esta última camada é de lona (subsistema 4) - com a função de impermeabilizar o subleito e direcionar a água drenada para a tubulação coletora, sendo o sistema de coleta de águas considerado o subsistema 5 (Figura 2).

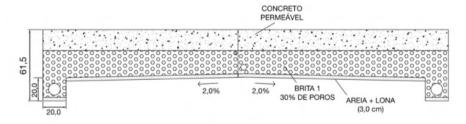


Figura 2 – Seção transversal do projeto da unidade funcional analisada

Fonte: elaborado pelos autores

2.2 Análise do inventário

Os conjuntos de dados gerais para realização do inventário de ciclo de vida (ICV), caracterizando o pavimento e quantificando cada uma das entradas nos subsistemas são dados específicos, fornecidos pela projetista da pista (11). Informações referentes às distâncias de transporte consideradas foram também coletados com a projetista a partir da informação dos fornecedores e, posteriormente, calculados genericamente através do *Google Maps*. Conjuntos de dados referentes ao uso dos equipamentos são secundários e determinados conforme especificação nas fichas técnicas do maquinário utilizado.

2.3 Avaliação do impacto ambiental

Foi selecionada somente uma categoria de impacto ambiental, que foi aquecimento global, representada pelas emisões de dióxido de carbono equivalente (CO_a) – essa escolha se deu porque essa era a única categoria com dados disponíveis para todas as entradas, e também, porque é uma das mais significativas no impacto ambiental. Para análise do inventário foi utilizada como principal fonte de coleta de emissão de CO₂ a base de dados do ICE (Inventory of Carbon and Energy – Embodied Carbon) versão 3.0 (2019), que tem o foco em construção. Para os casos em que não foi possível encontrar os produtos ou materiais nessa base de dados, foram utilizadas as bases de dados do Federal LCA Commons e da Ecoinvent versão 3. Sempre que possível, os dados da plataforma Ecoinvent foram obtidos para o Brasil, ou, em segundo caso, para a região denominada "GLO (global)", que caracteriza o mundo inteiro. Todas as bases de dados estrangeiras são de livre acesso por websites e são utilizadas sob o pressuposto de que os conjuntos de dados encontrados nelas são representativos para o estudo de caso e suficientes para a análise. Dessa forma, os dados utilizados para a obtenção do CO₂ embutido são genéricos e primários, e calculados através do software Excel – tanto para o balanço dos fluxo de entada e saída quanto para o cálculo dos impactos ambientais.

Todos os processos apresentados são de primeiro plano, com exceção das distâncias de transporte que foram calculadas separadamente para cada produto levado até a obra, e convertidas em impacto do uso do diesel. Identifica-se como principal limitação do estudo a utilização de bases de dados externas em conjuntos de dados nacionais, que pode vir a não representar de maneira fidedigna a realidade do caso em análise. Outras limitações são: podem não fazer parte alguns processos de segundo plano de cada material ou produto que não estão considerados nas platafomas *LCA* e *Ecoinvent*; e alguns itens não encontrados nas bases de dados ou de grande detalhamento (como utensílios, ferramentas e materiais de fixação) não foram acrescentados na análise.

Ainda assim, a qualidade dos dados utilizados para este trabalho é considerada adequada para o objetivo da análise de emissões de CO₂ equivalente de um pavimento, de acordo com os requisitos da norma NBR ISO 14044 adotada.

3 | RESULTADOS E DISCUSSÕES

Conforme mencionado, todos os quantitativos de dados foram obtidos do trabalho

de Strieder $(2020)^{(11)}$, com os valores reais utilizados e calculados para a obra. Cabe novamente ressaltar que nesta etapa de inventário e obtenção de CO_2 embutido alguns componentes e procedimentos foram excluídos da análise porque não foram encontrados em nenhuma base de dados, sendo eles: lona para cura no subsistema 1; energia da placa vibratória no subsistema 2; e lona de impermeabilização no subsistema 4.

3.1 Comparação entre cenários

Pela análise das emissões totais, considerando-se todos os subsistemas, se obteve um resultado muito semelhante para os dois tipos de pavimento (Figura 3). Nota-se que há uma maior diferença de fato na camada de revestimento de concreto permeável (subsistema 1), e por esse motivo, escolheu-se analisá-la isoladamente nos dois pavimentos.

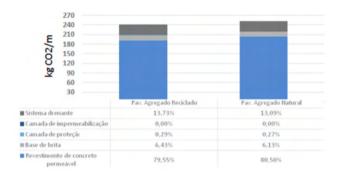


Figura 3 – Emissões totais (considerando todos os subsistemas)

Fonte: elaborado pelos autores

Pela análise isolada do subsistema 1 nos concretos permeáveis (Figura 4), notase que o transporte tem maior influência nas emissões de CO_2 para o caso de uso de agregado de RCD. No entanto, a contribuição nessas emissões é muito mais elevada em decorrência do uso dos materiais de construção que compõem o concreto. Além disso, o valor total das emissões dos constituintes é muito próximo nos dois diferentes tipos de agregados.

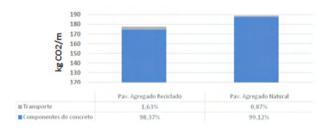


Figura 4 – Emissões do subsistema 1 (camada de concreto permeável)

Fonte: elaborado pelos autores

A partir disso, se fez uma análise considerando somente os componentes do concreto, na qual foi possível identificar o grande peso da contribuição do cimento nessas emissões. Em uma análise considerando que o pavimento é feito só de cimento e agregado (Figura 5), o cimento é responsável por aproximadamente 96% das emissões de CO₂ – valor praticamente idêntico para os dois tipos de agregados.

Sendo assim, optou-se pela análise direcionada somente ao agregado de fato, usado nos dois diferentes tipos de concreto permeáveis, a fim de verificar o efeito isolado de cada um deles. O resultado para a análise do agregado e do seu transporte para cada caso está apresentado na Figura 6.

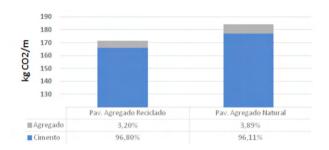


Figura 5 – Emissões do subsistema 1 (considerando somente o cimento e o agregado)

Fonte: elaborado pelos autores

Foi possível então notar que há um maior impacto do transporte do agregado de RCD até o local em que foi construído o pavimento do que em comparação com o transporte caso fosse utilizado o agregado natural. No entanto, o impacto total associado ao uso e transporte do agregado de RCD no concreto permeável ainda é menor do que no caso do uso de agregado natural. Esse fato pode ser explicado: a possível pedreira de onde seriam obtidos os agregados naturais é muito próxima do local onde foi construído o pavimento (aproximadamente 6,2 km).

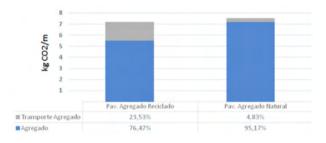


Figura 6 – Emissões do subsistema 1 (considerando o agregado e o seu transporte)

Fonte: elaborado pelos autores

Considerando um cenário em que o RCD passasse a ter maior emissão de CO, do

que o agregado natural se calcula, por essa análise definida pelos critérios que um dos dois fatores quanto ao transporte deveria acontecer: a distância do transporte de RCD até o local da obra aumentasse em aproximadamente 2 km ou mais; ou a distância da pedreira até o local da obra reduzisse em apenas 0,150 km ou mais.

4 | CONSIDERAÇÕES FINAIS

Esse estudo possibilitou estudar o impacto das emissões de CO₂ para um estudo de caso de fases de produto e construção de um pavimento de concreto permeável utilizando agregados provenientes de resíduos de construção e demolição comparativamente ao uso de agregados naturais. Em primeira análise, verificandose todos os componentes do pavimento, foi possível perceber que as proporções de impacto são bem semelhantes, mas na soma total da emissão de CO₂ é superior para o caso de concreto permeável com agregado natural.

De forma geral, em todas as análises feitas, o sistema de produto apresentou mais impacto quando considerando a utilização do agregado natural. No entanto, o trabalho mostrou que o impacto da utilização de cimento é significativamente superior ao do uso de agregados – da ordem de 96 vezes. Também foi possível concluir que, ao se verificar somente o impacto do cimento e dos agregados nesse pavimento, as emissões de ${\rm CO}_2$ praticamente se igualam em porcentagem, para os dois casos. O trabalho de Caldas *et al.* (2017)⁽⁹⁾, em que foi analisado o ciclo de vida em pavimentos de concreto drenante considerando diferentes unidades funcionais, também apontou a elevada contribuição do impacto do cimento em pavimentos de concreto permeáveis.

Por fim, verificou-se que pequenas variações nas distâncias de transporte podem ocasionar diferenças significativas nos resultados (quando a análise considera somente os agregados e o seu transporte). Sugere-se, para estudos mais conclusivos, que os agregados sejam estudados isoladamente considerando fluxos de segundo plano, ou aplicados em sistemas construtivos que não utilizem materiais de grande impacto ambiental, como aqui ocasionado pelo cimento.

REFERÊNCIAS

- 1. Wanielista, M.; Chopra, M.; Spence, J.; Ballock, C.; **Hydraulic Performance Assessment of Permeable Concrete Pavements for Stormwater Management Credit**. A final report prepared for the Florida Department of Transportation, 2007.
- 2. Lee, M. G.; Tia, M.; Chuang, S. H.; Huang, Y.; Chiang, C. L. **Pollution and Purification Study of the Permeable Concrete Pavement Material**. Journal of Materials in Civil Engineering, v. 26, ed. 8, 2013.
- 3. Ullate, E. G.; Lopez, E. C.; Fresno, D. C.; Bayon, J. R.; **Analysis and Contrast of Different Pervious Pavements for Management of Storm-Water in a Parking Area in Northern Spain**. Water Resource Management, v. 25, p. 1525-1535, 2011.
- 4. Cackler, E. T., Ferragut, T., Harrington, D. S., Rasmussen, R. O., and Wiegand, P. **Evaluation of U.S. and European Concrete Pavement Noise Reduction Methods**. Technical report prepared for the Federal Highway Administration under Cooperative Agreement, 2006.
- 5. Garber, S; Rasmussen, R. O.; Harrington, D. **Guide to Cement-Based Integrated Pavement Solutions**. Technical report prepared for the Portland Cement Association, 2011.

- 6. Weiss, P. T.; Kayhanian, M.; Gulliver, J. S.; Khazanovich, L. **Permeable pavement in northern North American urban areas: research review and knowledge gaps**. International Journal of Pavement Engineering, v.20, ed. 2, p. 143-162, 2017.
- 7. Chandrappa, A. K.; & Biligiri, K. P. Pervious concrete as a sustainable pavement material—Research findings and future prospects: A state-of-the-art review. Construction and Building Materials, v. 111, p.262-274, 2016.
- 8. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **ABNT NBR 16416**: Pavimentos permeáveis de concreto Requisitos e procedimentos Rio de Janeiro: ABNT, 2015.
- 9. Caldas, L. R.; Lins, D. N.; Sposto, R. M. **Avaliação do ciclo de vida de pavimento de concreto drenante considerando diferentes unidades funcionais**. Mix Sustentável, v.3, n. 3, p. 14-23. Florianópolis, 2017.
- 10. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **ABNT NBR ISO 14040**: Gestão ambiental Avaliação do ciclo de vida Princípios e estrutura. Rio de Janeiro: ABNT, 2009.
- 11. Strieder, H. L. **Estudo do uso de agregado de concreto reciclado em concreto permeável para pavimentos**. Dissertação (Mestrado em Engenharia Civil) Universidade Federal do Rio Grande do Sul, Porto Alegre, 2020.

Contatos

Endereço:

Av. Osvaldo Aranha, 99 - Prédio Castelinho, CEP: 90035-190. Porto Alegre-RS.

Telefone:

(51) 3308-3518

E-mail da comissão organizadora:

enarc2021@gmail.com

E-mail do comitê científico:

enarc.ccientifico2021@gmail.com

Site:

https://www.ufrgs.br/enarc2021

Instagram:

https://www.instagram.com/enarc2021/

Facebook:

https://www.facebook.com/enarc2021/

