Coffection:

APPLIED MATERIALS ENGINEERING

GILBERTO JOÃO PAVANI (ORGANIZADOR)

Coffection:

APPLIED MATERIALS ENGINEERING

Editora chefe Prof^a Dr^a Antonella Carvalho de Oliveira Editora executiva Natalia Oliveira Assistente editorial Flávia Roberta Barão Bibliotecária Janaina Ramos Projeto gráfico Camila Alves de Cremo Daphynny Pamplona Gabriel Motomu Teshima 2022 by Atena Editora Luiza Alves Batista Copyright © Atena Editora Natália Sandrini de Azevedo Copyright do texto © 2022 Os autores Imagens da capa Copyright da edição © 2022 Atena Editora Direitos para esta edição cedidos à Atena iStock Edicão de arte Editora pelos autores. Luiza Alves Batista Open access publication by Atena Editora

Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição *Creative Commons*. Atribuição-Não-Comercial-NãoDerivativos 4.0 Internacional (CC BY-NC-ND 4.0).

O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores, inclusive não representam necessariamente a posição oficial da Atena Editora. Permitido o *download* da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.

Todos os manuscritos foram previamente submetidos à avaliação cega pelos pares, membros do Conselho Editorial desta Editora, tendo sido aprovados para a publicação com base em critérios de neutralidade e imparcialidade acadêmica.

A Atena Editora é comprometida em garantir a integridade editorial em todas as etapas do processo de publicação, evitando plágio, dados ou resultados fraudulentos e impedindo que interesses financeiros comprometam os padrões éticos da publicação. Situações suspeitas de má conduta científica serão investigadas sob o mais alto padrão de rigor acadêmico e ético.

Conselho Editorial

Ciências Exatas e da Terra e Engenharias

Prof. Dr. Adélio Alcino Sampaio Castro Machado - Universidade do Porto

Prof^a Dr^a Alana Maria Cerqueira de Oliveira - Instituto Federal do Acre

Prof^a Dr^a Ana Grasielle Dionísio Corrêa - Universidade Presbiteriana Mackenzie

- Prof^a Dr^a Ana Paula Florêncio Aires Universidade de Trás-os-Montes e Alto Douro
- Prof. Dr. Carlos Eduardo Sanches de Andrade Universidade Federal de Goiás

Prof^a Dr^a Carmen Lúcia Voigt – Universidade Norte do Paraná

Prof. Dr. Cleiseano Emanuel da Silva Paniagua - Instituto Federal de Educação, Ciência e Tecnologia de Goiás

Prof. Dr. Douglas Gonçalves da Silva - Universidade Estadual do Sudoeste da Bahia

Prof. Dr. Eloi Rufato Junior - Universidade Tecnológica Federal do Paraná

Prof^a Dr^a Érica de Melo Azevedo – Instituto Federal do Rio de Janeiro

Prof. Dr. Fabrício Menezes Ramos - Instituto Federal do Pará

Prof^a Dra. Jéssica Verger Nardeli – Universidade Estadual Paulista Júlio de Mesquita Filho

Prof. Dr. Juliano Bitencourt Campos - Universidade do Extremo Sul Catarinense

Prof. Dr. Juliano Carlo Rufino de Freitas - Universidade Federal de Campina Grande

Prof^a Dr^a Luciana do Nascimento Mendes – Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte

Prof. Dr. Marcelo Marques - Universidade Estadual de Maringá

Prof. Dr. Marco Aurélio Kistemann Junior - Universidade Federal de Juiz de Fora

Prof. Dr. Miguel Adriano Inácio - Instituto Nacional de Pesquisas Espaciais

Prof^a Dr^a Neiva Maria de Almeida - Universidade Federal da Paraíba

Prof^a Dr^a Natiéli Piovesan – Instituto Federal do Rio Grande do Norte

Prof^a Dr^a Priscila Tessmer Scaglioni – Universidade Federal de Pelotas

Prof. Dr. Sidney Gonçalo de Lima - Universidade Federal do Piauí

Prof. Dr. Takeshy Tachizawa - Faculdade de Campo Limpo Paulista

Collection: applied materials engineering

Diagramação:	Camila Alves de Cremo
Correção:	Bruno Oliveira
Indexação:	Amanda Kelly da Costa Veiga
Revisão:	Os autores
Organizador:	Gilberto João Pavani

[Dados Internacionais de Catalogação na Publicação (CIP)	
C697	Collection: applied materials engineering / Organizador Gilberto João Pavani. – Ponta Grossa - PR: Atena, 2022.	
	Formato: PDF Requisitos de sistema: Adobe Acrobat Reader Modo de acesso: World Wide Web Inclui bibliografia ISBN 978-65-5983-861-5 DOI: https://doi.org/10.22533/at.ed.615222801	
	1. Materials engineering. I. Pavani, Gilberto João (Organizador). II. Título. CDD 669	
Elaborado por Bibliotecária Janaina Ramos - CRB-8/9166		

Atena Editora Ponta Grossa – Paraná – Brasil Telefone: +55 (42) 3323-5493 www.atenaeditora.com.br contato@atenaeditora.com.br

DECLARAÇÃO DOS AUTORES

Os autores desta obra: 1. Atestam não possuir qualquer interesse comercial que constitua um conflito de interesses em relação ao artigo científico publicado; 2. Declaram que participaram ativamente da construção dos respectivos manuscritos, preferencialmente na: a) Concepção do estudo, e/ou aquisição de dados, e/ou análise e interpretação de dados; b) Elaboração do artigo ou revisão com vistas a tornar o material intelectualmente relevante; c) Aprovação final do manuscrito para submissão.; 3. Certificam que os artigos científicos publicados estão completamente isentos de dados e/ou resultados fraudulentos; 4. Confirmam a citação e a referência correta de todos os dados e de interpretações de dados de outras pesquisas; 5. Reconhecem terem informado todas as fontes de financiamento recebidas para a consecução da pesquisa; 6. Autorizam a edição da obra, que incluem os registros de ficha catalográfica, ISBN, DOI e demais indexadores, projeto visual e criação de capa, diagramação de miolo, assim como lançamento e divulgação da mesma conforme critérios da Atena Editora.

DECLARAÇÃO DA EDITORA

A Atena Editora declara, para os devidos fins de direito, que: 1. A presente publicação constitui apenas transferência temporária dos direitos autorais, direito sobre a publicação, inclusive não constitui responsabilidade solidária na criação dos manuscritos publicados, nos termos previstos na Lei sobre direitos autorais (Lei 9610/98), no art. 184 do Código Penal e no art. 927 do Código Civil; 2. Autoriza e incentiva os autores a assinarem contratos com repositórios institucionais, com fins exclusivos de divulgação da obra, desde que com o devido reconhecimento de autoria e edição e sem qualquer finalidade comercial; 3. Todos os e-book são *open access, desta forma* não os comercializa em seu site, sites parceiros, plataformas de *e-commerce*, ou qualquer outro meio virtual ou físico, portanto, está isenta de repasses de direitos autorais aos autores; 4. Todos os membros do conselho editorial são doutores e vinculados a instituições de ensino superior públicas, conforme recomendação da CAPES para obtenção do Qualis livro; 5. Não cede, comercializa ou autoriza a utilização dos nomes e e-mails dos autores, bem como nenhum outro dado dos mesmos, para qualquer finalidade que não o escopo da divulgação desta obra.

APRESENTAÇÃO

A engenharia dos materiais é o ramo da engenharia que trata dos materiais como metais, cerâmicas, polímeros e compósitos, reunindo estudos científicos e aplicações práticas para a obtenção de novos materiais que são fundamentais para o desenvolvimento da sociedade, pois propiciam maior segurança e a qualidade de vida no uso cotidiano de veículos, máquinas e estruturas como edifícios, pontes e viadutos.

Porém, não basta criar um novo material, há necessidade de compreender suas propriedades como dureza, resistência ao calor e à corrosão que permitem sua aplicação em diversas áreas da indústria, bem como seu processo de produção.

A presente obra "Collection: Applied materials engineering" tem como objetivo a apresentação e a discussão de temas relevantes sobre a aplicação da engenharia de materiais em polímeros descartáveis, manufatura aditiva com aços de baixo carbono de baixa liga, caracterização de filmes de titânio, determinação de coeficientes de fricção em materiais médicos, desfosforação do ferro-gusa, inibidores de corrosão em materiais metálicos, inibidores poliméricos de hidratos de gás, microgeis de acrilamida e amido enxertado como doadores de óxido nítrico e a usinabilidade de ligas refratárias.

Portanto, esta obra apresenta grande potencial para contribuir com o entendimento dos temas apresentados, podendo servir como referência valiosa para novas pesquisas e estudos sobre as questões aqui discutidas.

Agradeço aos autores dos capítulos por suas valiosas contribuições e desejo aos leitores sucesso em seus futuros trabalhos de pesquisa sobre os temas apresentados nesta obra.

Gilberto João Pavani

SUMÁRIO

۹PÍTULO 1 1

AVALIAÇÃO DAS INFLUÊNCIAS DO TIPO DE TPE E DO TEOR DE COMPATIBILIZANTE NA PROCESSABILIDADE DE BLENDAS DE PLA/TPES EM MISTURADOR DE CÂMARA INTERNA

Giordano Pierozan Bernardes Nathália da Rosa Luiz Ruth Marlene Campomanes Santana Maria Madalena de Camargo Forte

🔄 https://doi.org/10.22533/at.ed.6152228011

CAPÍTULO 2......14

EVALUATION OF HIGH STRENGTH LOW ALLOY CARBON STEEL PRODUCED WITH WIRE ARC ADDITIVE MANUFACTURING TECHNOLOGY AND ITS POSSIBLE APPLICATION IN THE OIL AND GAS SECTOR

Alexis Van Wesemael Luciana Iglésias Lourenço Lima Ronaldo de Faria Antunes Bertrand Maillon Xavier Gostiaux Laurent Faivre

https://doi.org/10.22533/at.ed.6152228012

CARACTERIZAÇÃO FOTOCRÔMICA E FOTOCATALÍTICA DE FILMES DE TIO, OU DE TIO, MISTURADOS A DOIS DIFERENTES PRECURSORES DE TUNGSTÊNIO

Luana Góes Soares da Silva Annelise Kopp Alves

https://doi.org/10.22533/at.ed.6152228013

DETERMINACIÓN DE COEFICIENTES DE FRICCIÓN EN MEDIAS MEDICAS DE COMPRESIÓN

Elvira Cruz Osorio Mónica Cristina Cortés Martinez Martínez Estela Flores Gómez José Alberto Cortés Martínez Laura Patricia Sandoval Florín Claudia Hernández Hernández Rocío Garrido Adame Teresa Ramírez Rodríguez

🕹 https://doi.org/10.22533/at.ed.6152228014

ESTUDO DA INFLUENCIA DA MASSA DE ESCÓRIA E DO BANHO NA DESFOSFORAÇÃO

SUMÁRIO

DE FERRO GUSA ATRAVÉS DE TERMODINMICA COMPUTACIONAL

Anna Paula Littig Berger Daniela Bahiense de Oliveira Cynara Christ Klippel Camila Santos Scopel Felipe Faridn Grillo José Roberto de Oliveira

🕹 https://doi.org/10.22533/at.ed.6152228015

INIBIDORES DE CORROSÃO DA LINHA VERDE: UMA REVISÃO DA LITERATURA

Daniel Victor Carlos de Noronha Jardel Dantas da Cunha Andréa Francisca Fernandes Barbosa Antônio Robson Gurgel Regina Celia de Oliveira Brasil Delgado

https://doi.org/10.22533/at.ed.6152228016

METODOLOGIA DE TRIAGEM RÁPIDA PARA AVALIAÇÃO DE POTENCIAIS INIBIDORES POLIMÉRICOS DE HIDRATOS DE GÁS

Kelly Cristine da Silveira Elizabete Fernandes Lucas Colin D. Wood

https://doi.org/10.22533/at.ed.6152228017

MICROGEIS DE ACRILAMIDA E AMIDO ENXERTADO COM DOADORE DE NO

Regiane da Silva Gonzalez Lucas Toshitaka Yatsugafu Longo Mylena Ardenghi de Lima Amanda Ardenghi dos Santos Giovanna Conrado Quadros Thais Oliveira da Silva Thais Tiemi Tomiyama Lucas Umberto Desante Lopes Ana Paula Peron Aldo Eloizo Job

https://doi.org/10.22533/at.ed.6152228018

PRINCIPAIS CARACTERISTISCAS PARA A BAIXA USINABILIDADE DO INCONEL 718 COM FOCO NO PROCESSO DE FRESAMENTO

Luís Fillipe Lopes Torres Gabriel de Paiva Silva Geovanna Diniz Mendonça Déborah de Oliveira

🔄 https://doi.org/10.22533/at.ed.6152228019	
SOBRE O ORGANIZADOR	116
ÍNDICE REMISSIVO	

CAPÍTULO 3

CARACTERIZAÇÃO FOTOCRÔMICA E FOTOCATALÍTICA DE FILMES DE TIO, OU DE TIO, MISTURADOS A DOIS DIFERENTES PRECURSORES DE TUNGSTÊNIO

Data de aceite: 10/01/2022 Data de submissão: 21/10/2021

Luana Góes Soares da Silva

Universidade Federal do Rio Grande do Sul, Departamento de Engenharia de Materiais Porto Alegre – RS http://lattes.cnpq.br/8474215025680480

Annelise Kopp Alves

Universidade Federal do Rio Grande do Sul, Departamento de Engenharia de Materiais Porto Alegre – RS http://lattes.cnpq.br/0064626732086273

RESUMO: A visão colorida do espectro visível depende da iluminação. O fenômeno foi explicado por Isaac Newton no século XVII, através da decomposição da luz nas cores do arco-íris. A nossa percepção visual está ligada a existência de um "trinômio", conhecido como o observador (olhos), o objeto e a fonte de iluminação (luz). Materiais cerâmicos que absorvem o brilho no espectro visível, resultam numa mudança perceptível de cor, e são freqüentemente chamados de "centros de cores". Alguns exemplos interessantes incluem o Al₂O₂, o TiO, e o WO, são responsáveis pelas cores de rubi e safira azul, pó branco e pó amarelo respectivamente. Estes óxidos manifestam uma ampla variedade de cores, resultantes das transições eletrônicas que ocorrem na rede cristalina destes materiais. Diversos óxidos quando preparados sob a forma de filmes, exibem consideráveis alterações de cor guando expostos a um campo elétrico, radiação eletromagnética ou calor. Neste trabalho, filmes de TiO, e de TiO, contendo H₂WO₄ (ácido túngstico) ou Na₂WO₂.2H₂O (tungstato de sódio di hidratado) foram obtidos por spin-coating. As fases presentes foram detectadas através da difração de raios X (DRX), a microestrutura foi verificada por microscopia eletrônica de varredura (MEV), a fotocatálise heterogênea determinou a atividade fotocatalítica das amostras mediante ensaios de degradação de 125 mL de uma solução 20 ppm do corante alaranjado de metila, e a colorimetria avaliou o efeito fotocrômico nos filmes através de um colorímetro. Os resultados apontam que os filmes de TiO, contendo Na,WO,.2H,O foram os mais eficientes na mineralização do corante e simultaneamente expressaram as maiores variações colorimétricas. Devido a sincronicidade existente entre as propriedades químicas e físicas do TiO, com o W, e pela elevação da temperatura de calcinação que ocasionou uma diminuição da energia de band gap, que provocaram uma desordem na estrutura eletrônica das amostras, intensificando a absorção de luz pelas mesmas.

PALAVRAS-CHAVE: Trióxido de Tungstênio (WO₃), *Spin-Coating*, Fotocatálise, Fotocromismo.

ABSTRACT: Color vision of the visible spectrum depends on lighting. The phenomenon was explained by Isaac Newton in the 17th century, through the decomposition of light into the colors of the rainbow. Our visual perception is linked to the existence of a "trinomial", known as the observer (eyes), the object and the source of illumination (light). Ceramic materials that absorb glare in the visible spectrum, result in a noticeable change in color, and are often called "color centers". Some interesting examples include Al2O3. TiO2 and WO3, which are responsible for the colors of ruby and sapphire blue, powder white and powder yellow respectively. These oxides manifest a wide variety of colors, resulting from electronic transitions that occur in the crystal lattice of these materials. Several oxides, when prepared in the form of films, exhibit considerable color changes when exposed to an electric field, electromagnetic radiation or heat. In this work, TiO2 and TiO2 films containing H2WO4 (tungstic acid) or Na2WO4.2H2O (sodium tungstate dihydrate) were obtained by spin-coating. The present phases were detected by X-ray diffraction (XRD), the microstructure was verified by scanning electron microscopy (SEM), the heterogeneous photocatalysis determined the photocatalytic activity of the samples by degradation tests of 125 mL of a 20 ppm solution of the methyl orange dye, and colorimetry evaluated the photochromic effect on the films using a colorimeter. The results show that TiO2 films containing Na2WO4.2H2O were the most efficient in dye mineralization and simultaneously expressed the greatest colorimetric variations. Due to the existing synchronicity between the chemical and physical properties of TiO2 with W, and the increase in the calcination temperature that caused a decrease in the band gap energy, which caused a disorder in the electronic structure of the samples, intensifying their light absorption . KEYWORDS: Tungsten Trioxide (WO3), Spin-Coating, Photocatalysis, Photochromism.

1 I INTRODUÇÃO

Foi no século XVII que a decomposição da luz nas cores do arco-íris foi descrita pela primeira vez por Isaac Newton. O fenômeno foi explicado através de um experimento que analisou a decomposição da luz por um prisma. O espalhamento das cores obtidas com este experimento ficou conhecido como espectro, e se estende numa faixa que vai desde a radiação vermelha até a radiação violeta (LOPES, 2009, BERTOLINI, 2010 e CALLISTER, 2002).

A cor é determinada pela disposição espectral de radiação emitida, transmitida ou refletida. A composição da luz é observada através do efeito da cor no objeto, por comprimentos de onda e pela maneira que o objeto altera a luz que irradia sobre ele. Essas alterações podem ser demonstradas por curvas de absorbância, transmitância ou de reflectância espectral (LOPES, 2009). É uma informação visual, gerada por um estímulo que é percebido pelo nosso olho e interpretado pelo nosso cérebro. Para que os olhos sejam capazes de perceber uma cor é fundamental presença de raios de luz. Os raios de luz refletidos nos olhos percorrem um longo trajeto até chegar na retina. Lá se localizam numa região central da retina chamada fóvea. O olho humano possui dois tipos de células que são responsáveis por nos fazer enxergar: os cones e os bastonetes. Os bastonetes são células que necessitam de pouca luz para serem sensibilizadas. Entretanto não conseguem formar imagens coloridas ou nítidas. É por isso que a noite ou em locais escuro é muito difícil se distinguir a cor. Já os cones são sensibilizados com uma grande quantidade de luz e geram imagens nítidas e coloridas (TIANO, 2009) Existem 3 tipos de cones: os azuis,

os vermelhos, e os verdes. O cone azul é ativado em comprimentos de onda curtos, o cone verde é ativado em comprimentos de onda médio e o cone vermelho é ativado em comprimentos de onda longos. Assim, as cores supracitadas são os três tipos de coloração que os nossos olhos captam. Todas as outras cores que vemos são formadas a partir destas 3 cores (TIANO, 2009).

Dentro deste contexto, é impossível falar de colorimetria, sem mencionar a importância dos defeitos pontuais e dos solutos na determinação da cor dos materiais cerâmicos (MING CHIANG, *et al.*, 1997). Materiais que absorvem o brilho no espectro visível, resultando em uma mudança perceptível na cor, geralmente são chamados de "centros de cores" (MING CHIANG, *et al.*, 1997). Alguns exemplo interessantes de colorimetria, incluem as impurezas de Al_2O_3 que apresentam várias cores (rubis, safiras azuis, entre outras) e o semicondutor TiO_2 que conforme a temperatura de tratamento térmico ao qual é submetido apresenta um tipo de estrutura cristalina (anatase, brookita e rutilo) e coloração (preto, marrom-avermelhado, azul, entre outras). Essas diferenças de cores apresentadas por um mesmo material são baseadas: na formação de defeitos pontuais (vacâncias de oxigênio) e cristais individuais de coríndon, na temperatura de tratamento térmico ao qual o material é submetido, que por sua vez influenciará na desordem gerada na estrutura cristalina formada bem como na sua orientação cristalográfica, levando a manifestação de muitas propriedades elétricas, ópticas e químicas (MING CHIANG, *et al.*, 1997).

Sendo assim, como a percepção visual colorida é particular e no espectro visível depende da iluminação (VON BEZOLD, 1873), neste trabalho se avaliou como os olhos percebem as variações entre as diferentes cores em filmes de TiO_2 e de TiO_2 contendo percursores de tungstênio (H_2WO_4 e Na_2WO_4 · $2H_2O$) correlacionando com as suas propriedades fotocatalíticas, quando irradiados por luz UVA-vis. Neste trabalho não foram considerados casos de daltonismo ou discromatopsia, protanopsia, deuteranopsia, tritanopsia e acromatopsia. Os resultados se basearam na capacidade de olhos "normais" (sem anomalias) diferenciar as cores nas amostras.

21 METODOLOGIA

Os reagentes escolhidos para a preparação das amostras foram: O propóxido de titânio (Sigma-Aldrich), que contém o íon titânio indispensável para a formação do óxido de titânio. O ácido acético glacial (Sigma-Aldrich) foi usado visando acelerar a reação de hidrólise do propóxido de titânio. O álcool etílico anidro (Zeppelin) que foi usado como solvente geral da solução. Uma solução 10 %p de polivinilpirrolidona (PVP – Sigma-Aldrich, 1.300.000 g/mol) foi utilizada como veículo polimérico para produção das fibras por *electrospinning*. O tungstato de sódio di hidratado (Dinâmica) e o ácido túngstico (Sigma-Aldrich), foram utilizados como precursores de tungstênio. O peróxido de hidrogênio (Dinâmica) foi utilizado como agente oxidante.

2.1 Obtenção das fibras por electrospinning

O protocolo e os parâmetros utilizado na produção das fibras de TiO_2 foram baseados no trabalho de (ALVES, 2008). A metodologia para a síntese do TiO_2/WO_3 e TiO_2/Na_2WO_3 :2H₂O foi adaptada a partir dos trabalhos de (ALVES, 2008 e OLIVEIRA, 2012).

Primeiramente foram preparadas as soluções precursoras.

i) <u>Solução de TiO</u>₂ – Foram misturados 2,5 mL de propóxido de titânio (Tip), 2,0 mL de ácido acético glacial e 5 mL de uma solução alcoólica contendo 10% em peso de polivinilpirrolidona (PVP). A solução de PVP foi obtida através da mistura de 10 g do polímero (PVP) em um béquer contendo 100 mL de álcool etílico, sem aquecimento e, sob constante agitação magnética, até que todo o polímero estivesse completamente dissolvido.

<u>ii) Solução de TiO₂/WO₃</u> – Á solução de TiO₂ supracitada foi acrescentado 0,10 g de ácido tungstíco (H₂WO₄) e 1 mL de peróxido de hidrogênio (H₂O₂).

<u>iii) Solução de TiO₂/Na₂WO₄·2H₂O</u> - Á solução de TiO₂ supracitada foi acrescentado 0,10 g de tungstato de sódio di hidratado (Na₂WO₄·2H₂O) e 1 mL de peróxido de hidrogênio (H₂O₂).

<u>iv</u>) <u>Electrospinning</u> – Para a obtenção das fibras pelo processo de *electrospinning*, uma seringa plástica de 5 mL foi conectada a uma agulha hipodérmica de aço inox de 1 mm de diâmetro interno que foi preenchida com a solução precursora de TiO₂, de TiO₂/WO₃ ou de TiO₂/Na₂WO₄.2H₂O. A agulha foi conectada à fonte de alta tensão. A distância entre a ponta da agulha e o coletor cilíndrico rotativo revestido por uma folha de papel alumínio foi de 12 cm. Aplicou-se uma tensão de 13,5 kV entre a agulha e o coletor. Uma bomba de infusão (KD Scientific) controlou o fluxo da solução precursora (1,8 mL/h). As fibras foram coletadas a cada 30 minutos, durante o período de 4 horas para cada formulação.

v) Sinterização das fibras - Ocorreu em um forno elétrico tipo mufla, marca SANCHIS, à temperatura de 650 °C, 700 °C, 750 °C e 800 °C. Os parâmetros processuais adotados foram; patamar de 1 hora e a taxa de aquecimento de 1,4 °C/h.

2.2 Preparo de dispersões das fibras e do padrão P25

As quantidades de reagentes utilizados na preparação das soluções que compunham os filmes e os procedimentos para a realização do *spin-coating* é uma adaptação a partir do trabalho de (TELOEKEN, 2016).

Antes da deposição das soluções sobre as placas de vidro, as mesmas foram lavadas com uma solução de acetona e água a 80 %v/v. Após o término da lavagem das placas de vidro, estas foram levadas a um banho ultrassônico por 15 minutos e depois secas com papel absorvente.

Depois foram misturados 0,25 g do padrão TiO2-P25 (Evonik-pó comercial) ou das

fibras tratadas termicamente a 650 °C, 700 °C, 750 °C e 800 °C em 8 mL de etanol anidro e 0,8 mL de acetilacetona (Sigma-Aldrich). As misturas foram dispersas em um ultrassom por 10 minutos. Após este período foram adicionados 0,1 mL de Triton X-100 (Sigma-Aldrich) e 0,4 g de polivinilbitiral (PVB) e mantidos sob agitação magnética por 10 minutos.

2.3 Spin-coating

Os filmes foram obtidos através da deposição de 5 gotas de cada uma das soluções preparadas anteriormente sobre placas de vidro (1 cm x 2 cm) recobertas com FTO (*Fluorine-Doped Tin Oxide*, XOP Glass). Estas placas de vidro foram fixadas com fita dupla face no lugar apropriado do equipamento para o início do processo de *spin-coating*. O equipamento utilizado foi um (TC 100 Spin Coater) com uma rotação de 800 RPM por 30 s.

2.4 Métodos de caracterização

Os filmes foram caracterizados por difração de raios X (DRX), microscopia eletrônica de varredura (MEV), energia de *band gap*, colorimetria e, avaliação da atividade fotocatalítica, através de ensaios de degradação de uma solução 20 ppm do corante alaranjado de metila, sob iluminação UVA-vis.

Os ensaios de difração de raios X (DRX) determinaram as fases cristalinas presentes nas amostras. O equipamento utilizado foi um difratômetro da marca PHILIPS, modelo X'PERT, com radiação CuKa, uma tensão de 40 kV e corrente de 40 mA, velocidade de 0,05°/min e, com um passo de 1 segundo em uma faixa de 5 a 75 °.

A morfologia das amostras foi observada através de um microscópio eletrônico de varredura (MEV JSM 6060) que opera com uma tensão de 0,1 a 30kV. Antes do início das análises de MEV, as amostras foram recobertas com uma fina camada de ouro (através da técnica de *sputtering*) visando elevar a condutividade do material e propiciar melhores imagens da superfície das amostras.

A correlação de Kubelka e Munk foi utilizada para fornecer os valores da energia de *band gap* das amostras. O equipamento utilizado foi um espectrofotômetro de feixe duplo UVA-Vis- NIR (Cary 5000), com uma esfera integradora no modo de reflexão difusa de luz. A colorimetria foi determinada por um colorímetro, modelo Colorium 2 equipado com o *software i7.* O equipamento possui geometria óptica de 45°/0°, uma esfera integradora de d/8°, com uma área de medição de 13 mm. O iluminante utilizado foi D65, que corresponde a faixa espectral da luz do dia, e o observador utilizado foi o que corresponde a um campo de visão de 10° para visualizar o objeto. O equipamento registra as informações para definir o índice de cor com base no sistema CIE-La*b*. Neste sistema, a cor é determinada conforme os valores positivos ou negativos das coordenadas a* (vermelho e verde) e b* (amarelo e azul). O L* define a luminescência variando entre 0 a 100%. E a atividade fotocatalítica das amostras de TiO₂ e de TiO₂/WO₃ ou de TiO₂/Na₂WO₄2H₂O foi avaliada mediante o acompanhamento na alteração da concentração do corante alaranjado de metila, sob irradiação UVA-vis.

O processo de fotocatálise foi realizado em um reator de vidro *pyrex*, onde a radiação foi proporcionada por 12 lâmpadas negras UV-A, de 8 W cada, modelo Flúor BLB T5, da marca *Sadokin*. As lâmpadas estão dispostas em dois semi-cilindros, que possuem superfície interna refletora. Os demais componentes do reator fotocatalítico compreenderam um agitador magnético, um sistema de aeração de ar comprimido e um banho termostático, (ALVES, 2008).

As alíquotas foram retiradas do frasco reator através de um canal fechado por um septo de silicone. A circulação de água foi realizada de forma constante, pela parte externa do frasco, possibilitando assim, manter a temperatura do ensaio fixa em 30 °C. O frasco possui também uma tampa com um prolongamento com ponta porosa para borbulhar ar comprimido no interior do líquido. Para a realização dos ensaios de fotocatálise, utilizou-se 125 mL de uma solução contendo 20 ppm do corante alaranjado de metila, transferidos para um reator fotocatalítico, com o sistema de luz UVA-vis ligado. A seguir a placa de vidro contendo o filme a ser estudado foi imobilizada dentro do reator. Antes do início de cada ensaio foi coletada uma alíquota de 4 mL da solução, definida como amostra inicial de referência (absorbância indicativa de concentração igual a 100% alaranjado de metila; tempo de reação de zero minutos). Esta primeira alíquota foi retirada antes da aplicação do sistema de luz, da circulação de água e do borbulhamento de ar. A partir deste momento foram retiradas com uma seringa de plástico alíguotas de 4 mL da solução em guestão a cada 15 minutos. Em seguida as alíguotas foram filtradas em filtro de 0,2 μ m e transferidas para cubetas de polimetilmetacrilato (PMMA). Com término do ensaio, as alíquotas foram analisadas por um espectrofotômetro (Cary 5000, Agilent, que possui acessório UMA).

O desempenho fotocatalítico de cada filme foi comparado ao TiO_2 -P25 (Evonik-pó comercial). As análises fotocatalíticas contendo os filmes de TiO_2 , de TiO_2/WO_3 ou de TiO_2/Na_2WO_4 .2H₂O foram realizadas individualmente.

3 | RESULTADOS E DISCUSSÃO

A Figura 1 a-c são fotografias das fibras de TiO_2 , TiO_2/WO_3 e de $TiO_2/Na_2WO_4.2H_2O$ após a síntese das mesmas por *electrospinning*. Pelas imagens é possível perceber que todas as fibras sintetizadas apresentaram a coloração branca. Como não houve variação na cor apresentada pelas fibras, para fins de explanação foi escolhida uma amostra de cada percursor de TiO_2 , TiO_2/WO_3 e de $TiO_2/Na_2WO_4.2H_2O$ tratada termicamente a 800 °C.

Figura 1. Fotografia das fibras de (a) TiO₂, (b) TiO₂/WO₃ e de (c) TiO₂/Na₂WO₄.2H₂O sintetizadas por *electrospinning* tratadas termicamente a 800 °C, antes do teste colorimétrico.

Fonte: Próprias autoras, 2021.

A Figura 2 mostra os espectros de difração de raios X das amostras de TiO₂, sem tratamento térmico (STT) e após o tratamento térmico a 650 °C, 700 °C, 750 °C e 800 °C. As amostras de TiO₂ STT apresentaram-se amorfas. Para as amostras de TiO₂ tratadas até a temperatura de 700 °C somente a presença da fase anatase (JCPDS 01-078-2486) foi identificada. O primeiro pico característico desta fase aparece em aproximadamente 2 Θ = 25,271°. Para as amostras de TiO₂ submetidas ao tratamento térmico a partir de 750 °C, foram identificadas além da fase anatase a formação da fase rutilo (JCPDS 01-077-0442). O primeiro pico característico da fase rutilo aparece em aproximadamente 2 Θ = 27,294°.

Figura 2: Espectros de difração de raios X das amostras sem tratamento térmico e das tratadas entre as temperaturas de 650 °C e 800 °C.

Fonte: Próprias autoras, 2021.

A Figura 3 mostra os resultados dos ensaios de difração de raios X das amostras de TiO₂/WO₃, sem tratamento térmico (STT) e após o tratamento térmico a 650 °C, 700 °C, 750 °C e 800 °C. As amostras de TiO₂/WO₃ STT apresentaram-se amorfas. Nos filmes tratados até a temperatura de 650 °C foram identificadas as fases anatase (JCPDS 01-078-2486) e brookita (JCPDS 01-075-1582) para o TiO₂ com picos característicos em aproximadamente 2 Θ = 25,271° e 25,425°, respectivamente. Para o WO₃ foi detectada a fase monoclínica (JCPDS 00-032-1393), em todas as temperaturas de tratamento térmico, com primeiro pico característico em aproximadamente 2 Θ = 23°. Os filmes tratados a partir de 700 °C apresentaram para o TiO₂ além das fases anatase e brookita também a presença da fase rutilo (JCPDS 01-077-0442), esta última com o primeiro pico característico em aproximadamente 2 Θ = 27,294°.

Figura 3: Espectros de difração de raios X das amostras de TiO2/WO3 sem tratamento térmico e das tratadas entre as temperaturas de 650 °C e 800 °C.

Fonte: Próprias autoras, 2021.

As amotras de tungstato de sódio di hidratado tratadas até a temperatura de 700 °C, (Figura 4), apresentaram a fase monoclínica para o WO₃ (JCPDS 00-032-1393), a fase anatase (JCPDS 01-078-2486) e brookita (JCPDS 01-075-1582) para o TiO₂. Para os filmes calcinados a 750 °C foram identificadas as fases anatase e brookita para o TiO₂ e tetragonal (JCPDS 00-002-0414) para o WO₃, com o primeiro pico em 2 Θ = 37,604 °. Já os filmes calcinados a 800 °C apresentaram as fases anatase, brookita e rutilo (JCPDS 01-077-0442) para o TiO₂ e predominância da fase tetragonal para o WO₃. O grupo Na(OH) apresentou a fase ortorrômbica (JCPDS 00-035-1009) identificado em todas as amostras tratadas entre 650 e 800 °C, com primeiro pico em aproximadamente 2 Θ = 16 °. As diferenças observadas na estrutura cristalina do WO₃, já eram esperadas, em razão da mistura de óxidos de titânio e tungstênio e da transição entre as fases monoclínica e tetragonal do WO₃, que ocorre

com o aumento da temperatura de tratamento térmico.

Figura 4: Espectros de difração de raios X das amostras de TiO₂/Na₂WO₄.2H₂O sem tratamento térmico e das tratadas entre as temperaturas de 650 °C e 800 °C.

Fonte: Próprias autoras, 2021.

A Figura 5a-c mostra as imagens de microscopia eletrônica de varredura (MEV) da superfície das amostras de TiO2, TiO2/WO3 e TiO2/Na2WO4.2H2O. Em geral, os filmes contendo as fibras de TiO, (Figura 5a) parecem não possuírem uma orientação preferencial, apresentando uma microestrutura alongada e contínua. Essas observações também foram relatadas por (SHIM, 2009 e NGUYEN, 2011) quando obtiveram fibras cerâmicas pelo processo de *electrospinning*. Os filmes contendo as fibras de TiO₂/WO₂ (Figura 5b) apresentam-se em forma de bastonete, provavelmente devido a presença da fase rutilo (SHIM, 2009). Há relatos na literatura de que o TiO₂ nesta fase cristalina é capaz de formar grandes nanocristais em forma de bastonetes (SHIM, 2009). As fibras aparentam possuir em sua estrutura vários grãos, com tamanhos maiores que os observados para as fibras de TiO₂. A presença de WO₂ foi identificada por espectroscopia de energia dispersiva (EDS). Observando-se as amostras de TiO₂/Na₂WO₄·2H₂O (Figura 5c) nota-se um aglomerado de fibras alongadas. A presença deste aglomerado de fibras pode estar associada ao fato de que as fibras são compostas por Na, WO, 2H, O (PIKUDA, 2017 e GARCIA, 2016). A espectroscopia de energia dispersiva (EDS) indicou a existência de átomos de Na, W, Ti e O em todas as amostras de TiO₂/Na₂WO₄.2H₂O, proveniente do precursor (Na₂WO₄·2H₂O) utilizados na síntese dessas fibras.

Figura 5: Imagens de microscopia eletrônica de varredura (MEV) da superfície das amostras de (a) TiO₂, (b) TiO₂/WO₃ e (c) TiO₂/Na₂WO₄·2H₂O. Fonte. Fonte: Próprias autoras, 2021.

A Figura 6a-c mostra a coloração das soluções de TiO₂, TiO₂/WO₃ e de TiO₂/Na₂WO₄.2H₂O antes da síntese das fibras por *electrospinning*. A solução de TiO₂ é amareloclaro. A solução de TiO₂/WO₃ é amarelo. A solução de TiO₂/Na₂WO₄.2H₂O é transparente.

Figura 6: Cores transmitidas pelas soluções de (a) TiO₂, (b) TiO₂/WO₃ e de (c) TiO₂/Na₂WO₄.2H₂O. Fonte: Próprias autoras, 2021.

Em análises colorimétricas o máximo de absorbância ocorre na região da coloração complementar. Os resultados foram obtidos com o auxílio do *software i7* que registra

várias informações para cada análise, sendo as mais úteis para definir a região de máxima absorbância, as do sistema CIE-La*b*. A explicação de como funciona o sistema de cores CIE-La*b* está ilustrado através da Figura 7.

Figura 7. Esfera de cores do sistema CIE-Lab. Fonte. HAMESTER, 2014.

As amostras de TiO₂ tiveram máxima absorbância de luz na região de 570-590 nm (cor azul-escuro), influência dos valores positivos de a* (cor vermelho) e negativos de b* (cor azul). Já se esperava este resultado, pois a cor da solução de TiO₂ é amarelo-claro (Figura 6a), que é a cor complementar ao azul. Já as amostras de TiO₂/WO₃ tiveram máxima absorbância de luz na região de 400-440 nm (cor amarelo – esverdeado Figura), influência dos valores negativos de a* (cor verde) e positivos de b* (cor amarelo). Já se esperava este resultado, pois a solução de TiO₂/WO₃ é amarelo (Figura 6b), que é a cor complementar ao azul. E por fim, as amostras de TiO₂/Na₂WO₄.2H₂O tiveram máxima absorbância de luz na região de 450-500 nm (cor amarelo) influência dos valores positivos de a* (cor vermelho) e b* (cor amarelo). Este resultado já era esperado pois, a solução de TiO₂/Na₂WO₄.2H₂O (Figura 6c) é transparente. No caso de um material transparente todas as cores não vistas no filtro ou que não passam por ele são absorvidas. Com base nisto, a cor absorvida pelas fibras de TiO₂/Na₂WO₄.2H₂O foi o amarelo, que é a cor complementar ao azul.

A capacidade dos olhos humanos para diferenciar as alterações de cor entre as

amostras foi determinada através dos valores obtidos pela associação da L*(luminescência Tabela 2), ΔE (diferença de cor Tabela 2) e a (Norma DIN 6174, 1979, Tabela 1).

Diferença de cor (∆E*ab)	Classificação
0,0 - 0,2	Imperceptível
0,2-0,5	Muito pequena
0,5 – 1,5	Pequena
1,5 – 3,0	Distinguível
3,0 - 6,0	Facilmente distinguível
Maior que 6,0	Muito grande

Tabela 1. Norma DIN 6174.

A Tabela 2 apresenta os valores de luminescência (L*), ou seja, a cor percebida pelos olhos, durante a irradiação UVA-vis sobre as amostras de TiO₂, TiO₂/WO₃ e de TiO₂/Na₂WO₄.2H₂O. Os olhos perceberam cores escuras para as amostras de TiO₂, devido ao valor de L<50 e cores claras para as amostras de TiO₂/WO₃ e de TiO₂/Na₂WO₄.2H₂O, devido ao valor de L>50. Esta informação visual gerada e percebida pelos olhos apresentou-se distinguível para as amostras de TiO₂ e facilmente distinguível nas amostras de TiO₂/WO₃ e de TiO₂/Na₂WO₄.2H₂O. Estes resultados se basearam nos valores da diferença de cor (Δ E) apresentados na Tabela 2. Os olhos humanos não conseguem distinguir diferenças de cor menores de Δ E = 1.

Amostras	%L (Luminescência)	Diferença de cor (<i>∆E)</i>	<i>Capacidade de percepção</i> da cor pelo olho humano
Filmes de TiO ₂	32,15	2,32	Distinguível
Filmes de TiO ₂ /WO ₃	83,24	3,53	Facilmente Distinguível
Filmes de TiO₂/ Na₂WO₄.2H₂O	89,02	3,79	Facilmente Distinguível

Tabela 2. Valores de luminescência, diferenças de cor e capacidade de percepção da cor pelo olho humano.

Os valores da *band gap* das amostras de TiO₂, TiO₂/WO₃ e de TiO₂/Na₂WO₄.2H₂O são apresentados na Tabela 3. Estes valores são importantes pois, a distinção entre óxidos semicondutores ou isoladores é realizada com base na ocupação das bandas de energia. A Tabela 3 mostra uma redução no *band gap* das amostras conforme aumenta a temperatura de calcinação. Este aumento na temperatura favorece: as propriedades ópticas do material, os efeitos de superfície sobre a distribuição de níveis eletrônicos e também permite que as amostras de TiO₂/WO₃ e de TiO₂/Na₂WO₄.2H₂O tenham uma inibição da recombinação das cargas do par elétron/lacuna permitindo a transferência de cargas entre os dois óxidos (TiO₂ e WO₃), aumentando a capacidade de absorção de luz (SOARES, 2018). Em semicondutores intrínsecos, como no caso dos filmes obtidos neste trabalho, a energia de *band gap* (Eg) é caracterizada por uma banda de valência completamente preenchida e uma banda de condução completamente vazia. É através da excitação térmica ou óptica dos elétrons que ocorre a formação do *gap* de energia na banda de valência, e os elétrons são promovidos para a banda de condução. Com o aumento da temperatura têm-se a redução de *band gap* das fibras além da geração de desordem na estrutura eletrônica das mesmas, favorecendo as suas propriedades ópticas (MING CHIANG, *et al.*, 1997).

Amostras	Valores de band gap (eV)	
Filmes de TiO650°C	3,24	
Filmes de TiO -700°C	2,93	
Filmes de TiO -750°C	2,85	
Filmes de TiOູ໌-800°C	2,82	
Filmes de TiO /WO 650°C	2,58	
Filmes de TiO /WO 700°C	2,57	
Filmes de TiO /WO 750°C	2,56	
Filmes de TiO, WO 800°C	2,54	
Filmes de TiO,/Na,ŴO,.2H,O -650°C	2,52	
Filmes de TiO̯/Na̯ŚWO̯ł.2H̯SO -700°C	2,32	
Filmes de TiO̯/Na̯ŚWO̯ł.2H̯SO -750°C	2,27	
Filmes de TiO̯/Na̯ŚWO̯ł.2H̯SO -800°C	2,24	
Pò comercial ŤiO ₂ Evonik	3,2	

Tabela 3. Valores da band gap das amostras.

Os gráficos de fotocatálise são apresentados a seguir, foram plotados com base na relação C/C_{o} , onde C é a concentração molar da solução aquosa de corante em presença do catalisador (filme ou P25 - pó comercial) no tempo da análise. E C_{o} é a concentração molar inicial da solução aquosa de corante sem a presença do catalisador (filme ou P25 – pó comercial).

A Figura 8 apresenta a atividade fotocatalítica das amostras de TiO₂ e do padrão-P25, na descoloração da concentração relativa do corante alaranjado de metila, sob iluminação UVA-vis (λ = 365 nm) As amostras de TiO₂ mais fotoativas foram as tratadas a 650 °C. Elas diminuíram 35% da concentração relativa do corante, em 135 minutos de iluminação UVA-vis. As amostras tratadas a 700 °C e 750 °C, respectivamente, tiveram uma fotoatividade parecida, diminuindo 33% do corante, em 135 minutos de irradiação UVA-vis. Mesmo as amostras tratadas a 800 °C, que apresentaram menor fotoatividade, 27%, também tiveram uma fotoatividade superior a do padrão P25 (26%). O motivo para tal redução se deve a formação da fase rutilo nas amostras tratadas em temperaturas acima de 700 °C. Segundo a literatura (FELTRIN, *et al.*, 2013) esta fase deve surgir a partir de tratamentos térmicos acima de 400 °C, e é menos fotoativa do que a fase anatase. Por isto, ocorre uma redução da fotoatividade com o aparecimento desta fase (rutilo) nas amostras.

Figura 8: Fotoatividade das amostras de TiO₂ na descoloração do corante alaranjado de metila. Fonte: Próprias autoras, 2021.

A Figura 9 apresenta a atividade fotocatalítica das amostras de TiO₂/WO₃ e do padrão-P25, na descoloração da concentração relativa do corante alaranjado de metila, sob irradiação UVA-vis (λ = 365 nm)

Nota-se pelo gráfico que presença do tungstênio (H_2WO_4) nas amostras aumenta consideravelmente a fotoatividade destas. Isso ocorre porque a presença de ácido túngstico altera a posição da banda de valência e da banda condução do WO₃ em relação ao TiO₂, inibindo a recombinação do par elétron/lacuna permitindo a transferência de cargas entre os dois semicondutores, aumentando a eficiência do processo. A redução *do band gap* do TiO₂ (Tabela 3) e o surgimento da fase brookita, que dentre as fases polimórficas do TiO₂ é a que possui menor *gap* (FELTRIN, *et al.*, 2013), também colaboraram para o aumento da fotoatividade.

Possivelmente pela ocorrência de um sinergismo entre a fase anatase e rutilo, que aumenta a fotoatividade destas amostras (SOARES, 2018).

Figura 9: Fotoatividade das amostras de TiO₂/WO₃ na descoloração do corante alaranjado de metila. Fonte: Próprias autoras, 2021.

As amostras mais eficazes na degradação do corante alaranjado de metila foram os filmes contendo $\text{TiO}_2/\text{Na}_2\text{WO}_4.2\text{H}_2\text{O}$ tratados a 700, 750 e 800 °C, respectivamente (Figura 10). Estas amostras degradaram aproximadamente 100% do corante em 90 minutos de exposição a radiação UVA-vis. As razões para ocorrência de tal efetividade se devem, além do sinergismo existente entre as fases anatase e rutilo, a redução do *band gap* das amostras, também a presença do sódio associado ao aumento na temperatura de tratamento térmico, que aumentou o número de defeitos (vacâncias de O_2) na rede cristalina do TiO₂. As vacâncias de O_2 são defeitos pontuais que ocupam posições atômicas de rede e estão fortemente ligadas à aplicação em fotocatálise. Com a presença do sódio o TiO₂ adquiriu estabilidade da fase estrutural, responsável pelo aumento da condutividade para o íon oxigênio. A elevação da temperatura de tratamento térmico possibilitou que as vacâncias de O_2 adquirissem a mobilidade necessária para passar para um estado desordenado na sub-rede aniônica (MUCCILLO, 2008). Em um estudo realizado por (CHEN *et al.*, 2018) descrevem a obtenção de nanopartículas de TiO₂ black com excelente desempenho fotocatalítico, devido a geração de vacâncias de O_2 .

Figura 10: Fotoatividade das amostras de TiO₂/Na₂WO₄·2H₂O na descoloração do corante alaranjado de metila.

Fonte: Próprias autoras, 2021.

4 | CONCLUSÕES

A visão colorida do espectro visível depende da iluminação, que define que ao aproximar-se do nascer do sol nossos cones ainda não estão totalmente ativados, então nossa visão de cores limita-se ao azul verde e amarelo. Com mais iluminação temos o acionamento total da fóvea e todo o espectro pode ser visto. O aumento da temperatura de calcinação provocou uma desordem na estrutura eletrônica das amostras que diminuiu o *band gap* dos filmes e favoreceu muitas de suas propriedades ópticas. E isto pode ser observado nos filmes obtidos, pois conforme aumentou a temperatura de tratamento térmico aos quais as amostras foram submetidas, ocorre uma redução nos valores de *band gap* das mesmas. Isto é, o aumento da excitação térmica através da elevação da temperatura promoveu os elétrons da banda de valência para a banda de condução. As propriedades ópticas foram influenciadas pela temperatura de calcinação que provocou uma desordem na estrutura eletrônica das amostrão de luz pelas mesmas.

AGRADECIMENTOS

Os autores agradecem ao apoio do Laboratório de Materiais Cerâmicos (LACER) da Universidade Federal do Rio Grande do Sul (UFRGS) e financeiro da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

REFERÊNCIAS

ALVES, A. K. **Obtenção de micro e nanofibras de TiO**₂ por *electrospinning*: caracterização de **propriedades e atividade fotocatalítica**. 2008. 136p. Tese (Doutorado em Engenharia – Ciência e Tecnologia dos Materiais) – Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais, PPGE3M/RS, Porto Alegre.

BERTOLINI, C. **Sistema para medição de cores utilizando espectrofotômetro**, estado de Santa Catarina, Brasil, 2010. Trabalho de Conclusão de Curso (Centro de Ciências Exatas e Naturais Curso de Ciência da Computação – Bacharelado) - FURB, Universidade Regional de Blumenau, 2010.

CALLISTER JÚNIOR, W. D. Ciência e engenharia de materiais: uma introdução. 5. ed. Rio de Janeiro: LTC, 2002.

CHEN, S., XIAO, Y., WANG, Y., HU, Z., ZHAO, H., AND XIE, W. A Facile Approach to Prepare Black TiO, with Oxygen Vacancy for Enhancing Photocatalytic Activity. *Nanomaterials*, 8, (2018) 2-16.

FELTRIN, J.; SARTOR, M. N., De NONI, A. J; BERNARDIN, A. M.; HOTZA, D., LABRINCHA, J. Superfícies fotocatalíticas de titânia em substratos cerâmicos. Parte I: Síntese, estrutura e fotoatividade. *Cerâmica*, 59, (2013) 620-632.

GARCIA, A.P. Síntese e caracterização de nanoestruturas de TiO₂ de alta eficiência fotocatalítica obtidas pelo método dos peróxidos oxidantes combinado com tratamento solvotermal assistido por micro-ondas, estado do Rio Grande do Sul, Brasil. Tese (Doutorado em Engenharia - Ciência e Tecnologia dos Materiais) - UFRGS, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2016.

HAMESTER L. S. **Desenvolvimento de um** *colorímetro in-line* para o monitoramento da extrusão de polímeros. 153p. Dissertação (Mestrado em Ciência e Engenharia de Materiais) - Centro de Ciências Exatas e de Tecnologia - Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de São Carlos, São Carlos, 2014.

LOPES, L.C. **Controle metrológico da cor aplicado à estamparia digital de materiais têxteis**, estado do Rio de Janeiro, Brasil. 2009. Dissertação (Mestrado em Metrologia para a Qualidade e Inovação) – PUCRJ, Pontifícia Universidade Católica do Rio de Janeiro, 2009.

MING CHIANG, Y., DUNBAR BIRNIEIII, P., DAVID KINGERY, W. Physical ceramics: principles for ceramic Science and engineering. 2. ed. New York: John Wiley & Sons, 1997.

MUCCILLO, E.N.S. Condutores de íons oxigênio - uma breve revisão. Cerâmica, 54, (2008) 129-144.

NGUYEN, T. A.; JUN, T. S.; RASHID, M.; KIM, Y. S. Synthesis of mesoporous tungsten oxide nanofibers using the *electrospinning* method. *Materials Letters*, 65, (2011) 2823–2825.

OLIVEIRA, H.G. Eletrodos Porosos Contendo TiO₂ e WO₃: Propriedades Eletroquímicas e Atividade Fotocatalítica Para Remoção do Corante Rodamina 6G e do Hormônio 17 a-Etinilestradiol em Solução Aquosa. 2012. 188p. Doutorado. (Tese de doutorado em Ciências) Instituto de Química da Universidade Estadual de Campinas SP/Campinas.

PIKUDA, O.; GARLISI, C.; SCANDURA, G.; PALMISANO, G. Micro-mesoporous N-doped brookiterutile TiO₂ as efficient catalysts for water remediation under UV-free visible LED radiation. *Journal of Catalysis*, 346, (2017) p. 109–116. SHIM, H.S.; KIM, W. J.; SUNG, Y. E.; KIM, W. B. Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. *Solar Energy Materials and Solar Cells*, 93, (2009) 2062-2068.

SOARES, L. G. **Obtenção por** *electrospinning* e caracterização de fibras nanoestruturadas de **TiO**₂ e sua aplicação fotocatalítica. 2013. 82p. Dissertação (Mestrado em Engenharia – Ciência e Tecnologia dos Materiais) – Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais, PPGE3M/RS, Porto Alegre.

SOARES, L.G; ALVES, A.K. Analysis of colorimetry using the CIE-L*a*b* system and the photocatalytic activity of photochromic films. *Materials Research Bulletin*, 105, p.318–321. 2018.

SOARES, L. G. **Correlação entre as propriedades fotocrômicas e atividade fotocatalítica dos óxidos de titânio e tungstênio**. 2018. 116p. Tese (Doutorado em Engenharia – Ciência e Tecnologia dos Materiais) – Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais, PPGE3M/RS, Porto Alegre.

TELOEKEN, A.C. Efeito da Adição de Polivinilbutiral na Obtenção de filmes de TiO₂ por *Dip-Coating*, sua Caracterização Microestrutural e Fotoeletrolítica na Produção de Hidrogênio a Partir da Água. 2015. 105p. Tese (Doutorado em Engenharia – Ciência e Tecnologia dos Materiais) – Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais, PPGE3M/RS, Porto Alegre.

TIANO, P. C. M. Cor e colorimetria: minicursos CRQ-IV, estado de São Paulo, Brasil. 2009.

VON BEZOLD, J. F. W. Ueber das gesetz der farbenmischung und die physiologischen grundfarben. Annalen der Physik, 226, p. 221-247, 1873.

ÍNDICE REMISSIVO

A

Aço carbono de baixa liga 14 Aço carbono de baixa liga e alta resistência 14 Agente compatibilizante 3, 10

В

Blenda polimérica 3

С

Citotoxicidade 95, 96, 103 Corrosão 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 106

D

Desfosforação 54, 55, 56, 57, 59, 62, 63, 64, 65, 66 Doadores de óxido nítrico 94, 96, 101

Е

Elastômero termoplástico 4 Extratos vegetais 67, 69, 70, 75, 79, 80

F

Ferramentas de cerâmica 105, 110, 111, 113
Ferro-gusa 54, 55, 56, 57, 58, 59, 62, 66
Filme de óxido de Titânio - TiO2 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 59
Fotocatálise 27, 32, 39, 41
Fotocromismo 27
Fresamento 105, 107, 108, 110, 111, 112, 113, 114

Н

Hidratos de gás 85, 86, 91 I Inconel 718 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115 Inibidores da linha verde 67, 69 Inibidores de corrosão 67, 69, 70, 74, 75, 76, 79, 81, 82 Inibidores de hidratos de gás 85 Inibidores poliméricos 85, 87 Inibidores sintéticos 67

Μ

Manufatura aditiva 14, 15 Manufatura aditiva por arco elétrico - WAAM 14

0

Óxido nítrico 94, 95, 96, 97, 100, 101, 102, 103, 104 P

Poli (ácido láctico) - PLA 1, 2, 4 Poliuretano termoplástico 1, 3, 4 Pré-tratamento de ferro-gusa 55, 56 Propriedades mecânicas 11, 15, 68, 73, 105, 106, 112 Protocolo de alto rendimento 85

R

Resfriamento criogênico 105, 111

S

Spin-coating 27, 28, 30, 31

Т

Termodinâmica computacional 54, 57, 63, 66 Testes não destrutivos 15 Tratamento térmico 15, 29, 33, 34, 35, 41, 42, 73, 105, 112, 113 Trióxido de Tungstênio - WO3 27

- www.atenaeditora.com.br
- 🖂 contato@atenaeditora.com.br
- @atenaeditora
- f www.facebook.com/atenaeditora.com.br

Coffection:

APPLIED MATERIALS ENGINEERING

- www.atenaeditora.com.br
- 🔀 contato@atenaeditora.com.br
- @atenaeditora
- f www.facebook.com/atenaeditora.com.br

Coffection:

APPLIED MATERIALS ENGINEERING

