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Abstract: In this work, the orbital dynamics 
of synchronous satellites is studied. The 
considered resonance is 14:1; in other words, 
the satellite completes fourteen revolutions 
while the Earth completes one. In the 
development of the geopotential, the zonal 
harmonic J20 and the tesseral harmonic J1414 
are considered. The order of the dynamical 
system is reduced through successive Mathieu 
transformations and the final system is solved 
by numerical integration. Numerical results 
show the phase space with the libration and 
circulation regions, the time behavior of the 
semi-major axis and the φ2 angle.
Keywords: Synchronous Satellites, Orbital 
Dynamics, Resonance.

INTRODUCTION
Recent applications of artificial satellites 

require the description of the orbital 
motion under a precision of centimeters. In 
order to attain such actual expected level, 
several perturbations must be considered 
simultaneously, as well as resonant effects. 
Also, for the analysis of the coupled effects it is 
mandatory the knowledge of each effect take 
separately.

The space between the Earth and the Moon 
has several artificial satellites and objects in 
some resonance. Synchronous satellites in 
circular or elliptical orbits have been used 
for navigation, communication and military 
missions. This fact justifies the great attention 
that has been given in literature to the study of 
resonant orbits characterizing the dynamics 
of these satellites (LANE, 1988; ELY and 
HOWELL, 1996; SAMPAIO et al., 2012a, 
20212b, 2014; ROSSI, 2008).

These studies are done using orbital 
perturbations such as due to the geopotential, 
lunisolar perturbations, solar radiation 
pressure, tide effect, spin-orbit coupling, 
considering commensurability between the 
artificial satellites mean motion and the 

Earths rotational motion (SAMPAIO et al., 
2012c). The influence of resonances in the 
orbital motion problem perturbed by the 
geopotential has been observed by several 
authors, among them are Lane (1988), Ely 
and Howell (1996), Sampaio (2013) and Neto 
(2006).

The objects orbiting the Earth are classified, 
basically, in Low Earth Orbit (LEO), Medium 
Earth Orbit (MEO) and Geostationary Orbit 
(GEO). Most of the objects are found in the 
LEO region, because this region has a big 
quantity of space debris (OSIADER and 
OSTDICK, 2009; SAMPAIO, 2014; SAMPAIO 
and SANTOS, 2021). The Fig. 1 shows the 
semi-major axis versus eccentricity of the 
catalogued objects, (SPACE TRACK, 2016), 
and the exacts resonances 1:1, 2:1 and 14:1, 
considering the commensurability between 
the frequencies of the artificial satellites and 
space debris mean motion with the Earth’s 
rotation motion, this last resonance is studied 
in the present work.

The Fig. 1 shows a big quantity of objects, 
including artificial satellites and space debris, 
around the 1:1 and 2:1 resonance in the 
GEO and MEO regions, respectively. But, 
the increasing number of objects in the LEO 
region and the largest quantity of this objects 
in the 14:1 resonance compared with the other 
regions, motivated the study of this resonance 
in the present work.

In this paper, the commensurability 
between the frequencies of the artificial 
satellite mean motion with the Earth’s 
rotation motion is studied. The considered 
resonance is 14:1; in other words, the satellite 
completes fourteen revolutions while the 
Earth carries one. In the development of the 
geopotential, the zonal harmonic J20 and the 
tesseral harmonic J1414 are considered. The 
order of the dynamical system is reduced 
through successive Mathieu transformations 
and the final system is solved by numerical 
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integration. In the dynamical model, the 
critical angle φ14146−1, associated to the tesseral 
harmonic J1414, is studied. Numerical results 
show the phase space with the libration and 
circulation regions and the time behavior of 
the semi-major axis and φ2 angle.

RESONANT HAMILTONIAN AND 
EQUATIONS OF MOTION

In this section, a simplified Hamiltonian 
describing the resonant problem is derived.

Consider Eq. (2.1) to the Earth gravitational 
potential written in classical orbital elements 
(OSORIO, 1973; KAULA, 1966)

Xcos (φlmpq(M, ω, Ω, θ)),            (2.1)

where µ is the Earth gravitational  
parameter, µ=3.986009 x 1014 m3/s2, a, e, I, Ω, 

ω, M are the classical keplerian elements: a 
is the semi-major axis, e is the eccentricity, I 
is the inclination of the orbit plane with the 
equator, Ω is the longitude of the ascending 
node, ω is the argument of pericentre and M 
is the mean anomaly, respectively; ae is the 
Earth mean equatorial radius, ae=6378.140 
km, Jlm is the spherical harmonic coefficient of 
degree l and order m, Flmp(I) and Glpq(e) are 
Kaula’s inclination and eccentricity functions, 
respectively. The argument φlmpq(M, ω, Ω, θ) is 
defined by the Eq. (2.2)

φlmpq(M, ω, Ω, θ) = (l - 2p + q)M + (l - 2p) ω 
+m(Ω - θ - λlm) + (l - m) .                    (2.2)

where θ is the Greenwich sidereal time and 
λlm is the corresponding reference longitude 
along the equator.

In order to describe the problem in 
Hamiltonian form, Delaunay canonical 
variables are introduced.

Figure 1. Semi-major axis versus eccentricity of the catalogued objects orbiting the Earth. The exacts 
resonances 1:1, 2:1 and 14:1 are indicated.
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(2.3)

Using the canonical variables, one gets the 
Hamiltonian ,

    (2.4)

with the disturbing potential Rlm given by

(2.5)

The argument φlmpq( , g, h, θ) is defined by

(2.6)

and the coefficient Blmpq(L, G, H) by

                 (2.7)

The Hamiltonian  depends explicitly 
on the time through the Greenwich sidereal 
time θ, where θ = ωet (ωe is the Earth’s angular 
velocity and t is the time). A new variable 
Θ, conjugated to θ, is introduced in order to 
extend the phase space. In the extended phase 
space, the extended Hamiltonian  is given 
by

                  (2.8)

For resonant orbits, it is convenient to use 
a new set of canonical variables. Consider the 
canonical transformation of variables defined 
by the following relations

                        (2.9)

where X, Y, Z, Θ, x, y, z, θ are the modified 
Delaunay variables.

The new Hamiltonian , resulting from 
the canonical transformation defined by Eq. 
(2.9), is given by

 (2.10)

where the disturbing potential R’lm is given 
by

                       (2.11)

Consider the resonance to be studied in this 
work; that is, the commensurability between 
the Earth rotation angular velocity ωe and the 
mean motion n. This commensurability can 
be expressed as

     (2.12)

considering l, p, q and m as integers. The 
commensurability of the resonance studied, 
(l − 2p + q)/m, is defined by α. When this 
commensurability occurs, small divisors, 
associated to the tesseral harmonics, arise in 
the integration of the equations of motion 
(LANE, 1988). These terms are called resonant.

The short and long period terms can 
be eliminated from the Hamiltonian 

 by applying an averaging method. A 
reduced Hamiltonian is obtained from the 
Hamiltonian  when only secular and 
resonant terms are considered. Several 
authors, (ELY and HOWELL, 1996; NETO, 
2006), also use this simplified Hamiltonian 
to study the resonance. Successive canonical 
transformations are done with the goal to 
write the final Hamiltonian, 2,f (SAMPAIO, 
2013). 

A new set of canonical variables is defined

(X, Y, Z, Θ, x, y, z, θ) → (X1, Y1, Z1, Θ1, x1, y1, 
z1, θ1)
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And this transformation is given by the 
following equations

(2.13)

Note that Z1=C1 and the z1 is an ignorable 
variable. So, the order of the dynamical system 
is reduced in one degree of freedom.

The new set of canonical variables, X1, Y1, 
Z1, Θ1, x1, y1, z1, θ1, in the reduced Hamiltonian, 
one gets the resonant Hamiltonian. The word 
”resonant” is used to denote the which is valid 
for any resonance. 

The resonant Hamiltonian has all resonant 
frequencies, relative to the commensurability 
α. Now, by simplification, the term αm-l +2p 
will be represented by α’m’. φ1,lmp(α’m’) argument 
is given by

(2.14)
with

  (2.15)

Now, consider a single frequency among 
the several resonant frequencies that can be 
obtained from the expression

                                          (2.16)

The frequency φ1,lmp(α’m’) for the fixed 
coefficients m and (l − 2p − mα) will be the 
unique resonant frequency considered in the 
resonant Hamiltonian. This frequency will be 
called ”critical frequency”.

To determine a critical frequency, one 
needs to fix all the coefficients of the variable 
x1, y1, θ1; in other words, one fixes α, m and 
(l-2p-mα).

Once this critical frequency has been 
chosen among the possible resonant 
frequencies, the other periodic terms of the 
resonant Hamiltonian are taken as short 
period terms, with frequencies different from 
the critical frequency.

Defining a single critical frequency, or, 
assuming the isolated study of each frequency, 
a new Hamiltonian is obtained. The coefficients 
k = l-2p and m are fixed. This Hamiltonian 
contains secular and critical terms only. Since 
k is a fixed value, the Hamiltonian can be put 
in the simplified form.

Using the first integral, a new Mathieu 
transformation can be defined. This canonical 
transformation is given by the following 
equations

                                      (2.17)

The Hamiltonian function is invariant with 
respect to this new Mathieu transformation. 
And now considering q=αm-k, one gets  the  
final  Hamiltonian, 2,f 

          (2.18)

Note that Y2 = C2 and y2 is an ignorable 
variable.

The new  angle  φ2,(2p+k)mp(αm−k)(x2, θ2) is  
given by

                                       (2.19)

where  φ2 = m(αx2 − θ2),  and

                  (2.20)
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The Hamiltonian, 2,f has all tesseral  
related to the chosen critical frequency. The 
dynamical system generated by Hamiltonian,  

2,f is

(2.21)

(2.22)

The Eqs. (2.21) and (2.22) represent 
the equations of motion in a resonance of 
commensurability α.

In the Eq. (2.21), the term B2,(2p+k)mp(αm−k)
(X2, C1, C2) is given by

(2.23)

The term B2j,0,j,0(X2, C1, C2) is

(2.24)

In the Eq. (2.22), the terms  
and  are

                                               (2.25)

                       (2.26)

In the Eqs. (2.25) and (2.26), the terms 
related with the inclination function 

 can be 
expressed as

The inclination I = I(X2, C1, C2) is

And the derivative  is

(2.27)

The inclination function is given by 
(KAULA, 1966; GOLEBIWSKA et al., 2010; 
WNUK, 1988)

(2.28)

With , E(.) means “integer part 
of ”, jj1=max(0,l-m-2p), jj2=min(l-m, 2l-2p), 
c=cos(I/2), s=sin(I/2),  
and kk=E(l-m/2).

And  is

(2.29)
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The inclination function used in the secular 
terms F2j,0,j(I)

(2.30)

And  can be expressed as

(2.31)

The derivatives related with the eccentricity 
function  and  can 
be expressed as

The eccentricity e=e(X2,C2) is defined as

(2.32)

And the derivative  is

(2.33)

The eccentricity Glpq(e) function is defined 
in Kaula (1966) and Golebiwska et al. (2010).

In the next section are shown some results 
of the numerical integration of the Eqs. (2.21) 
and (2.22) involving the 14:1 resonance.

RESULTS
Figures 2 and 3 show the phase spaces, 

a versus φ2, for the critical angle φ14146−1, 
associated to tesseral harmonic J1414, according 
to the numerical integration of the equations 
of motion, (2.21) and (2.22). The initial 
conditions, in the Figs. 2 and 3, for inclinations 
are 870 and 950, respectively and eccentricities 
are 0.019 and 0.005, respectively. The initial 
values of the semi-major axis are around the 
critical semi-major axis.

Figures 4 and 5 show the time behavior of 
the semi-major axis and φ2 angle, according 
to the phase spaces of the Figures 2 and 3. 
The libration and circulation regions are 
differentiated in the Figs. 4 and 5.

The Figs. 2 to 5 show the phase spaces, a 
versus Ф2 and time behavior of the semi-major 
axis, considering the critical angle Ф14146-1 
associated to J1414. Around the 14:1 resonance, 
there are several space debris orbiting the 
Earth, without control and risking the useful 
time of the artificial satellites in operation. 
The knowledge of regular or stable regions, 
in the LEO zone, can be very important to 
provide greater security for the orbital motion 
of artificial satellites and, possibly, lower 
fuel consumption with orbital maneuvers 
compared to unstable regions

CONCLUSIONS
In this work, the orbital dynamics of 

synchronous satellites is studied. The 
dynamical behavior of the critical angle 
Ф14146-1 associated to the 14:1 resonance 
problem in the artificial satellites motion have 
been investigated.

Results show the phase spaces, a versus 
Ф2, and the time behavior of the semi-major 
axis  for the critical angle Ф14146-1, associated to 
tesseral harmonic J1414. The initial conditions 
used for inclinations are 87o and 95o and 
eccentricities are 0.019 and 0.005, respectively. 
The initial values of the semi-major axis are 
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Figure 2. Semi-major axis versus Ф2 angle, considering the critical angle Ф14146-1 associated to J1414. The 
initial conditions for inclination and eccentricity are I=87o and e=0.019, respectively.

Figure 3. Semi-major axis versus Ф2 angle, considering the critical angle Ф14146-1 associated to J1414. The 
initial conditions for inclination and eccentricity are I=95o and e=0.005, respectively.
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Figure 4. Time behavior of the semi-major axis, considering the critical angle Ф14146-1 associated to J1414. The 
initial conditions for inclination and eccentricity are I=87o and e=0.019, respectively.

Figure 5. Time behavior of the semi-major axis, considering the critical angle Ф14146-1 associated to J1414. The 
initial conditions for inclination and eccentricity are I=95o and e=0.005, respectively.
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around the critical semi-major axis.
The appearance of the phase spaces found 

by numerical integration, resembles the phase 
space of the simple pendulum, with two 
different regions, separated by the separatrix.

The theory developed for the resonant 
Hamiltonian and the equations of motion can 
be applied for any resonance.
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