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APRESENTAÇÃO

A Engenharia Mecânica pode ser definida como o ramo da engenharia que aplica 

os princípios de física e ciência dos materiais para a concepção, análise, fabricação e 

manutenção de sistemas mecânicos. O aumento no interesse por essa área se dá 

principalmente pela escassez de matérias primas, a necessidade de novos materiais que 

possuam melhores características físicas e químicas e a necessidade de reaproveitamento 

dos resíduos em geral. Além disso a busca pela otimização no desenvolvimento de projetos, 

leva cada vez mais a simulação de processos, buscando uma redução de custos e de 

tempo.

Neste livro são apresentados trabalho teóricos e práticos, relacionados a área 

de mecânica, materiais e automação, dando um panorama dos assuntos em pesquisa 

atualmente. A caracterização dos materiais é de extrema importância, visto que afeta 

diretamente aos projetos e sua execução dentro de premissas técnicas e econômicas. Pode-

se ainda estabelecer que estas características levam a alterações quase que imediatas no 

projeto, sendo uma modificação constante na busca por melhores espostas e resultados.

De abordagem objetiva, a obra se mostra de grande relevância para graduandos, 

alunos de pós-graduação, docentes e profissionais, apresentando temáticas e metodologias 

diversificadas, em situações reais. Sendo hoje que utilizar dos conhecimentos científico  

de uma maneira eficaz e eficiente é um dos desafios dos novos e nheiros.

Boa leitura.

Henrique Ajuz Holzmann

João Dallamuta
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CAPÍTULO 3
 

A REVIEW ON ITERATIVE AND SERIES SOLUTIONS 
FOR KEPLER’S EQUATION

Paula Cristiane Pinto Mesquita Pardal
Universidade de São Paulo (EEL/USP)

Lorena, SP, Brasil

João Francisco Nunes de Oliveira
Cia de Gás de São Paulo (COMGÁS)

São Paulo, SP, Brasil

Leonardo de Oliveira Ferreira
Universidade de São Paulo (EEL/USP)

Lorena,SP, Brasil

Pedro Novak Nishimoto
Cia de Gás de São Paulo (COMGÁS) 

São Paulo, SP, Brasil

Roberta Veloso Garcia
Universidade de São Paulo (EEL/USP) 

Lorena, SP, Brasil

ABSTRACT: The purpose is to review iterative 
and series methods applied to the solution of 
Kepler’s equation, which is solved over the entire 
range of elliptic motion. The method whose results 
will work as a reference is the Newton-Raphson’s 
numerical method. The results will be discussed 
around the number of iterations required until 
the convergence criterion is satisfied, that is, 
residual error in eccentric anomaly lower than  
rad (for iterative methods) or  rad (for series-
based methods) and the processing time. The 

advantages and drawbacks of each method will 
be presented.
KEYWORDS: Kepler’s Equation; Numerical 
Methods; Iterative Solutions; Series Solutions.

1 | 	INTRODUCTION
Artificial satellites are employed in many

activities, such as space exploration, land 

mapping, microgravity experiments and 

telecommunication. Regardless of the mission 

for which the satellite is designed, the knowledge 

of its most accurate possible orbital position is 

critical for the mission success. And here lies 

the importance of Kepler’s equation: it gives a 

relation between the position of the satellite and 

time (Battin, 1999).

The elliptical form of Kepler’s Equation is given 

by:

M = E — e sin (E) (1)

where the three quantities are related to the 

orbit Keplerian elements: M is the mean 

anomaly; E, the eccentric anomaly; and , the 

eccentricity. Kepler’s equation is transcendental 

in E; therefore, the solution for this quantity, 

when M is given cannot be expressed by a finite

number of terms (Battin, 1999). The solutions 

for Kepler’s equation can only be approximated, 

generally using computational methods.

Since Kepler’s equation is one of the most 

Mariana Pereira de Melo
Universidade de São Paulo (EEL/USP)

Lorena, SP, Brasil
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famous transcendental equations, it has inspired many developments in mathematics during 

the last decades.

An algorithm based on simple initial cubic approximations and a slight generalization 

of the Newton-Raphson method, was presented for the solution of Kepler’s equation (Ng, 

1979). In Danby and Burkardt (1983), methods of iteration are discussed in relation to Kepler’s 

equation, considering various initial “guesses”, with possible strategies for their choices. 

Several of these iterative methods are compared; the one used in the comparisons has 

local convergence of fourth order. If in the first study, Danby and Burkardt considered the 

solution of the conventional form of Kepler’s equation for elliptic orbits, in the second, they first

considered hyperbolic orbits equation, then generalizations for elliptic and hyperbolic orbits 

(Burkardt and Danby, 1983).

Serafin (1986) analytically examined techniques for selecting the interval within which 

the root of the Kepler’s equation of satellite motion is to be sought. In 1986, Odell and Gooding 

reviewed starting formulas and iteration processes for the solution of Kepler’s equation, giving 

details of two complete procedures that operates with an iterative process. Mikkola (1987) 

derived a method to obtain an approximate solution for Kepler’s equation that could be used 

for all orbit types, including hyperbolic.

Markley (1996) solves Kepler’s Equation over the entire range of elliptic motion by 

a fifth-order refinement of the solution of a cubic equation. This method requires a square 

root, a cube root, and two trigonometric functions (four transcendental function evaluations). 

In Fukushima (1997), two approximations of the Newton-Raphson method were developed. 

The first is a sort of discretization, namely to search an approximate solution on pre-specified

grid points. The second is a Taylor series expansion. A combination of these was applied to 

solving Kepler’s equation for the elliptic case. Later, he developed a procedure to solve a 

modification of the standard form of the universal Kepler’s equation, which is expressed as a 

nondimensional equation with respect to a nondimensional variable (Fukushima, 1999).

Condurache and Martinuşi (2007) present an exact vectorial solution to the 

Kepler problem. A vectorial regularization linearizes Kepler’s equation, using a Sundman 

transformation. A unified approach to the classic Kepler problem is offered, by studying both 

rectilinear and non-rectilinear Keplerian motions with the same instrument.  In Davis et al. 

(2010) seven sequential starter values for solving Kepler’s equation for fast orbit propagation 

are proposed. These methods have constant complexity (not iterative), do not require pre-

computed data, and can be implemented in a few lines of code.

More recently, Reza and Ghadiri (2014) focused on Newton-Raphson’s method for 

solving Kepler’s equation. In order to increase the stability of Newton’s method, various 

guesses were studied. Based on time of implementation, an appropriate choice is presented: 

first guesses that increase the isotropy and decrease the solution time of implementation. 

Starting algorithms for the iterative solution of elliptic Kepler’s equation are also considered 

in Calvo et al. (2013), where new global efficiency measures are introduced and several well-
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known starters with minimum computational cost are analyzed on the light of these efficiency

measures. And Avendano et al. (2015) used Smale’s α-theory to prove that Newton’s method 

starting at the defined approximate zero produces a sequence that converges to the actual 

solution at quadratic speed.

2 | 	ITERATIVE AND SERIES-BASED METHODS
In this paper, the approximations of six different methods are compared: four are 

iterative methods, and two, methods based on series approach. The iterative methods are: 

Newton-Raphson (the solutions it produced were used as a reference), Halley, Regula-Falsi 

and Successive Approximations, and were computationally implemented. The methods 

based on series solutions comprise Lagrange Expansion Theorem and Fourier-Bessel Series 

Expansion (Battin, 1999).

2.1	 Newton-Raphson’s method

Newton-Raphson’s method is an iterative method usually applied to numerical solution 

of equations of the form , where  is differentiable. The iteration function of this method is 

(Franco, 2006):

(2)

Kepler’s Equation can be conveniently written as:

E — e sin (E) — M = ƒ (E) (3)

and solved by Newton-Raphson’s Method via:

(4)

The iteration process in Eq. (4) stops when the root accuracy reaches a specific value,

determined by each problem.

2.2	 Halley’s method
Halley’s Method is a generalization of Newton’s method that aims at finding the root 

of a nonlinear equation and requires analytical and numerical computation of higher-order 

derivatives of the function. The algorithm adapted to Kepler’s equation for any fixed value of  

to iterate for  is given by (Gander, 1985):
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(5)

For this application, it has been considered , then: 

(6)

2.3	 Regula-falsi method
The Regula-Falsi method is a simple iterative technique, which consists in considering 

two initial approximations X1 and X2, such that ƒ(X1) and (X2) have opposite signs, i.e.:

ƒ(X1)· (X2) < 0 (7)

so that can be determined by considering the equation of secant line as the function  in the 

interval , as follow: 

(8)

(9)

for a given ɛ, then X3 is the root searched. Otherwise, ƒ(·) is calculated from the choice of a 

value X1, between X1 and X2, so that ƒ (X) has the opposite sign of ƒ (X3). From this point, 

X3 is calculated, then X4, and so on. The process should be repeated until a root with a 

specific accuracy is obtained. The formulation for the iterative process can be summarized 

as:

(10)

2.4	 Successive approximations method
In this iterative method, a function , continuous in the range where the root must be 

found, is chosen. Let  be rewritten as (Franco, 2006):

ƒ (x) = φ (x) — x (11)

Considering:
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φ (x) = x + A (x) * ƒ (x) (12)

and that when x is the root of ƒ (x), i.e., ƒ (x) = 0, follows that x = φ (x), for all A (x) ≠ 0. 

Considering φ (x) as defined in Eq. (12), if x is the root of ƒ (x), then:

φ (x) = x (13)

It means that, on the point where x is the root of ƒ (x), replacing the value of x in the 

function φ (x) will return the very x value.

Therefore, this method consists in finding the numerical value that, when placed in φ (x), 

returns the x value. The iterative function is:

xn+1 = φ (xn) (14)

in which n is the actual nth iteration.

2.5	 Lagrange inversion theorem
The Lagrange Inversion Theorem is an exact analytical method that not relies on 

numerical manipulations. This method provides an analytical solution for non-linear equations 

in terms of an infinite series (Rathie et al., 2013). Consider the functional equation, for which 

the Kepler’s equation is a special case (Battin, 1999):

y = x + α * Φ (y) (15)

in which α is considered a small parameter (identified as the orbit eccentricity in the Keple ’s 

equation). It follows that y, as a function of x, can be expanded as a Taylor series with α =0:

(16)

which can be turned into the following power series, given by the Lagrange Inversion 

Theorem:
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(17)

2.6	 Fourier-bessel series expansion
Another approach to determine an approximate solution to Eq. (1) is a representation in 

a power series (no iterative approach). This expansion, called Lagrange Expansion, presents 

the eccentric anomaly  in terms of a power series of the eccentricity . However, this series 

does not converge for all values of the eccentricity. The Fourier-Bessel Series Expansion 

solves this problem, because it is convergent for all eccentricity values. The expansion is 

defined below and details can be found in Battin (1999) and Colwell (1992)

(18)

in which K is the number of terms required for the expansion to provide the value of E with 

the desired accuracy.

3 | 	RESULTS
In this paper, four iterative methods were investigated regarding the calculation of the 

eccentric anomaly E. The reference solution was obtained via Newton-Raphson’s Method, 

and its results were compared with three methods: Halley, Regula-Falsi, and Successive 

Approximations. This study also aims at evaluating two series-based methods: Lagrange 

Expansion Theorem and Fourier-Bessel Series Expansion. Since their approaches are 

different from the iterative methods, these results were compared directly to each other.

There is no uniform way in which the various authors evaluate the efficiency of 

methods to solve Kepler’s equation (Nijenhuis, 1991). Herein, the evaluation was carried 

out using a convergence criterion: (i) the number of iterations required until the residual 

error (in E) is lower than 10-12 rad for iterative methods and lower than 10-4 rad for series-

based methods; and (ii) the processing time to achieve such tolerance. For the iterative 

methods, the choice of a residual error lower than 10-12 rad is due to the guarantee that 

the error in the orbit will be lower than the order of centimeters; while 10-4 rad is due to the 

series-based methods limitations.

In order to assess whether the behavior of these variables differs according to 

eccentricity and mean anomaly values, for each method, the calculation of the eccentric 

anomaly was implemented as follows: 

•	 21 values were taken into account for the eccentricity, over the entire elliptical 
interval ;
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•	 11 values were considered for the mean anomaly, over the interval [0,π]. 

Therefore, Kepler’s equation was solved for a grid of points in the (e, M)-plane. The 

increments for the grid size were Δ e =  and ΔM =  rad, which leads to 231 pairs of points 

(e, M). The calculations covered the value e = 1, which is orbitally, but not mathematically 

pointless. 

It is important to explain that the results could have been discussed around the error 

(the absolute difference between each method’s solution and Newton-Raphson’s solution). 

However, as the admitted errors are low, especially for the iterative methods, such analysis 

was not significant in this application

Regarding the processing time, Tab. (1) carries the information from the computer 

used to perform the simulations.

Processor Intel ® Core ™ i7-7500U CPU @ 2.70 GHz 2.90 GHz

Installed memory (RAM) 8.00 GB

Cash memory 4.00 GB

System type 64-bit operating system, x64-based processor

Programming language MATLAB ® 

Table 1. Specifications of the computer used for the simulations

3.1	 Number of Iterations Assessment

Iterative Methods
The first analysis will be around the number of iterations that each method needed 

to reach the specified accuracy (according to the method’s nature: iterative or in series), for 

each pair of points  used as the initial guess. In all graphs, the grid of 231 pairs of previously 

established points and its corresponding performance are mapped. 

For better analysis and understanding of the graphs, two elements were used to rank 

the results:

•	 Size of the circles that represent each pair  results: directly proportional to the 
number of iterations, that is, the smaller its size, the smaller the number of ite-
rations, and vice versa.

•	 Color of the circles that represent each pair  results: the color gradient goes from 
blue (fewer number of iterations) to yellow (greater number of iterations), and 
the green color portrays the intermediate values.

Figure (1) shows the analysis related to the Halley’s method. For all initial guesses, 

the Halley’s method requires none, 3 or 4 iterations to achieve accuracy lower than 10-12 rad. 

The mean anomaly M represents the conversion to angle of the time elapsed since the body 

passed through the orbit perigee (M = 0). If M = 0 or M = π, it is known that E = 0 or E = π, 
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respectively, and if e = 0, automatically M = E; in these cases, the numerical solution becomes 

unnecessary (the method does not require iteration), as shown in Fig. (1). For all other regions, 

3 or 4 iterations were sufficient for Halley’s method to achieve accuracy, including e = 1, which 

does not represent elliptical motion (parabolic orbit). The results for this method were very 

similar to those of the reference (Newton-Raphson method) and, for this reason, the reference 

was withdrawn from the graphs and its results will be presented in Tab. (2).

Figure 1. Number of iterations required for Halley’s Method to achieve accuracy lower than  rad.

Figure (2) exhibits the results regarding Regula-Falsi method. For the entire grid of 

initial guesses, 1 to 21 iterations were needed in order to reach accuracy lower than 10-12 rad.  

As with Halley’s method, if M = 0, M = π or e = 0, the numerical solution becomes unnecessary 

and, according to the nature of the method,  iteration was necessary, according to Fig. (2). The 

Regula-Falsi method presents greater sensitivity in relation to the eccentricity variation, that 

is, as e → 1, the number of iterations necessary to score accuracy increases, for any value  of 

M in the interval [0, π].

Figure 2. Number of iterations required for Regula-Falsi Method to achieve accuracy lower than 10-12 rad.
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Figure (3) presents the method of Successive Approximations performance. For each 

pair (e, M), it took from 1 to 1790 iterations so that the method reaches the required accuracy. 

If M = 0, M = π or e = 0, the behavior is exactly the same as the Regula-Falsi method, 

as shown in Fig. (3). The number of iterations in the Successive Approximations method is 

even more sensitive to the variation of the eccentricity, and when 0.8 < 1 and  < M < π, 

simultaneously, a problematic region starts to stand out, where convergence still occurs, but 

it is very costly from a computational point of view, requiring more than 100 interactions to 

achieve accuracy smaller than 10-12 rad.

Figure 3. Number of iterations required for Successive Approximations Method to achieve accuracy 
lower than 10-12 rad.

From the results presented, regarding the number of iterations necessary to achieve 

an accuracy lower than 10-12 rad, it is clear that, among the iterative methods, the Halley’s 

Method is much more efficient than the other two methods, and the Successive Approximations 

methods, on average, is the one which requires the greater number of iterations to reach 

the established accuracy. While a maximum of 21 interactions were required in the Regula-

Falsi method, the Successive Approximations method performed up to 1790, in order to 

achieve convergence. From the graphs, there is a difference in the critical regions in which 

the methods required a greater number of iterations: the Successive Approximations method 

needs a greater number of iterations when eccentricity is greater than 0.90 and mean anomaly 

is greater than 1.88, while the Regula-Falsi method reaches its maximum for eccentricity 

between 0.5 and , and mean anomaly between 0.63 and 1.57. 

In 34 combinations of eccentricity and mean anomaly values (15% of the possible 

combinations), both methods obtained the same number of iterations, in 78 combinations 

(34%), the Regula-Falsi method required a greater number of iterations compared to the 

Successive Approximations method. However, the largest difference in these cases was 15 

iterations. Finally, in 119 combinations (52%), the Successive Approximation method had a 

greater number of iterations than the Regula-Falsi, with a difference of up to 1783 iterations 
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between them (of these, in 7 cases, the difference was greater than 50 iterations).

Series-Based Methods
Figures (4) and (5) discuss the methods based in series performance: Fourier-Bessel 

Series Expansion and Lagrange Inversion Theorem, respectively. Due to the distinct nature 

of these methods, they were compared with each other, separately from iterative methods. 

The difference of performance between the two is huge: for each pair (e, M), while the 

Fourier-Bessel Series Expansion needs a maximum of 13 iterations to achieve an accuracy 

less than 10-4, the Lagrange Inversion Theorem needs up to 4900 iterations (~ 376 times 

more than Fourier-Bessel Series Expansion). In all 231 combinations of eccentricity and 

mean anomaly, the Lagrange Inversion Theorem required a greater number of iterations 

than the Fourier-Bessel Series Expansion. For entries , M = 0, M=  and M = π (∀ e  Є [0,1]) 

or e = 0 (∀ M Є [0, π]), both methods converge quickly. The Lagrange Inversion Theorem 

high number of iterations elsewhere in the grid indicates that a more accurate analysis 

needs to be made on this expansion.

Figure 4. Number of iterations required for Fourier-Bessel Series Expansion to achieve accuracy lower 
than 10-4 rad.
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Figure 5. Number of iterations required for Lagrange Inversion Theorem to achieve accuracy lower than 
10-4 rad.

In Tab. (2) some descriptive measures of the number of iterations are presented, both 

for iterative and series-based methods, even though the series-based methods have been 

compared separately. As the average is a measure of position sensitive to outliers, it was 

decided to analyze its results together with the median; the standard deviation is the measure 

of data dispersion around its average. In the first line of Tab. (2) are the statistics obtained for 

the Newton-Raphson’s method (reference) and the similarity of its results with those obtained 

via Halley’s method stands out, as already discussed.

So far, from the results presented and Tab. (2) analysis, it is possible to list the 

methods, identifying which ones are the most efficient in relation to the number of iterations. 

The iterative Halley’s method showed the best results, followed by the Fourier-Bessel series 

expansion and, later, the iterative Regula-Falsi method. These three methods presented close 
mean and median values ​​and a low standard deviation value, which indicates that there are 

no outliers, that is, for all the values ​​of eccentricity and mean anomaly used in this work, there 

was not a large number of iterations necessary for convergence. The methods that presented 

less satisfactory results were the iterative Successive Approximations methods and, finall , 

the Lagrange Inversion Theorem. Both presented mean values ​​much greater than their 

respective medians, in addition to a high standard deviation value. These results indicate the 

presence of outliers in the data, that is, for certain values ​​of eccentricity and average anomaly, 

these methods required an anomalous number of iterations, quite different from the usual one.



Coleção desafios das engenharias: Engenharia mecânica Capítulo 3 30

Number of Iterations Mean Standard 
deviation Median

Newton-Raphson 3.446 1.921 4

Halley 2.931 1.608 4

Regula-Falsi 9.883 6.025 8

Successive Approx. 33.468 125.631 13

Fourier-Bessel 5.152 2.926 5

Lagrange Theorem 617.420 1276.703 81

Table 2. Statistics of number of iterations analysis.

In order to improve the analysis and to measure the impact of the findings related to 

the number of iterations in the processing time, additional results are presented in the next 

subsection

3.2	 Processing Time Assessment

Iterative Methods
The processing time was measured posteriori and, therefore, involves the actual 

execution time of the algorithms. It depends on factors related to the machine, the 

programming language used and, sometimes, it is a function of additional aspects of a 

particular input (Linder, 2021).

Figure (6) shows the measured processing time for the reference method, Newton-

Raphson, over the entire grid of 231 possible inputs. It is possible to perceive that one of 

the limit regions, in which the orbits are circular or quasi circular (e → 0), has the longest 

processing time, for any value of M. Thus, as the algorithm is the same for all initial guesses, 

the method is sensitive to this entry of eccentricity. For the other points, the processing time 

starts to increase if  < M < π, ∀e Є (0,1]. All the other iterative methods studied here 

showed shorter processing time in this specific situation

Figure 6. Processing time for Newton-Raphson’s Method (iterative reference).
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Figure (7) presents the processing time required by the method of Successive 

Approximations, taken into account the 231 pairs of . It is noticeable that the processing time 

in the limit region where  is higher, a behavior that is also observed in Fig. (6). As for the other 

points, the longest processing times occurred , when:

•	 1.88 < M < 3.14 for the Successive Approximations Method. 

•	 2.51 < M < 3.14 for Regula-Falsi Method. 

•	 1.88 < M < 3.14 for Halley’s Method. 

Based on these results, it is concluded that particular aspects of the input values ​​need 

to be better analyzed, which is beyond the objective of this study.

As a behavior very similar to that shown in Fig. (7) occurred for the methods of Halley 

and Regula-Falsi, the respective graphs will be omitted and more results related to these 

methods will be discussed in the statistical analysis of Tab. (3).

Figure 7. Processing time for Successive Approximations Method.

Series-Based Methods
Here, it was used the same condition applied in the number of iterations assessment: 

the methods whose solution is based on the series approach were analyzed separately. 

Figures (8) and (9) show the measured processing time of the Fourier-Bessel Series 

Expansion and the Lagrange Inversion Theorem, respectively. These methods called for a 

considerably longer processing time, which was expected, due to the nature of the approach 

and the number of operations that needed to be carried out to obtain the methods results. 

The minimum processing times are very close to the equivalent times required by the iterative 

methods, and the differences emerged in the maximum processing times. When analyzing 

Fig. (8), it is noted that the largest order of Fourier-Bessel Series Expansion processing time 

is similar to the reference ones, although its occurrence is greater, that is, most of the points 

in the  grid demanded the maximum time to reach convergence. In addition, Fig. (9) shows 

that the maximum processing time obtained for the Lagrange Inversion Theorem is up to  
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times greater than the Newton-Raphson’s solution equivalent time, which designates this as 

the least efficient method among all. Furthermore, the same problematic region, previously 

observed, starts to stand out ( and , simultaneously), in which convergence is detected, at the 

cost of a higher computational burden.

Figure 8. Processing time for Fourier-Bessel Series Expansion.

Figure 9. Processing time for Lagrange Inversion Theorem.

Table (3) contains data from the statistical analysis of the six methods, which again 

include mean, standard deviation and median. The first line of Tab. (3) presents the statistics 

obtained for the Newton-Raphson method (reference) and it is clear that, in terms of processing 

time, the iterative methods were competitive with each other, due to the behaviors shown in 

the graphs, confirmed through Tab. (3) statistics. Series-based methods were computationally 

more costly, which is an expected conclusion, given their approaches. Even so, Fourier-

Bessel Series Expansion sustained a competitive performance, compared to the iterative 

methods, while Lagrange Inversion Theorem results did not, which statistically corroborated 

the discrepancies detected in the graphs. In theory, if more terms are added to the Lagrange 

Inversion Theorem series, an increase in processing time is expected (although this analysis 
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needs to be done with more criteria).

Processing Time (s) Mean Standard deviation Median
Newton-Raphson 1.65210-4 5.77710-4 3.78010-5

Halley 1.34810-4 4.26110-4 3.99010-5

Regula-Falsi 1.55110-4 5.09510-4 4.30010-5

Successive Approx. 1.47510-4 4.27310-4 5.12010-5

Fourier-Bessel 4.33910-3 1.04810-2 9.62010-4

Lagrange Theorem 1.327 3.481 3.94010-2

Table 3. Statistics of processing time analysis.

4 | 	CONCLUSIONS
The goal of this paper was to review an application of six methods, iterative and 

in series, for the solution of the Kepler’s equation, over a grid of points in the elliptical 

motion interval. The analysis is based on the number of iterations that each method requires 

to achieve a stipulated accuracy and on the post-processing time (execution time). The 

comparison was separated according to the nature of the methods. The solution obtained 

using the Newton-Raphson’s method worked as reference for the iterative methods.

Regarding the number of iterations, Halley’s method performed as competitively as 

the reference solution. Regula-Falsi and Successive Approximations methods, on the other 

hand, were more sensitive to the variation of the eccentricity input value, in the interval (0,1]. 

For the latter method, even, a problematic region began to be laid out: e Є (0.81) (quasi-

parabolic orbits) and M Є , simultaneously, where convergence still occurs, but it 

is very computationally costly, in terms of processing time and/or number of iterations. It 

implies that the method of Successive Approximations is not stable for very eccentric orbits 

(e → 1), considering that e = 1 does not configure orbital elliptic motion

The processing time analysis indicated competitiveness among the four iterative 

methods and the Fourier-Bessel Series Expansion, observed both in the graphical and in 

the descriptive measures’ analysis. The only method that presented results that were very 

distant from the others, with maximum processing time of the order of 100 times greater than 

the others, was the Lagrange Inversion Theorem. Consistently, it had already exhibited signs 

of convergence trouble in the number of iterations analysis for the same region, because the 

same region stood out in the analysis of the iterative Successive Approximations methods.

The difference presented by the Lagrange Inversion Theorem results for both 

number of iterations to reach the required accuracy and processing time indicates that a 

more accurate analysis needs to be made on this expansion and the impact of the number 

of terms in the series and the truncation order should be studied further.
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