

Carmen Lúcia Voigt (Organizadora)

Impactos das Tecnologias na Engenharia Química

Atena Editora 2019

2019 by Atena Editora

Copyright © da Atena Editora

Editora Chefe: Prof^a Dr^a Antonella Carvalho de Oliveira

Diagramação e Edição de Arte: Natália Sandrini e Lorena Prestes

Revisão: Os autores

Conselho Editorial

Prof. Dr. Alan Mario Zuffo - Universidade Federal de Mato Grosso do Sul Prof. Dr. Álvaro Augusto de Borba Barreto - Universidade Federal de Pelotas Prof. Dr. Antonio Carlos Frasson - Universidade Tecnológica Federal do Paraná Prof. Dr. Antonio Isidro-Filho - Universidade de Brasília Profa Dra Cristina Gaio - Universidade de Lisboa Prof. Dr. Constantino Ribeiro de Oliveira Junior - Universidade Estadual de Ponta Grossa Profa Dra Daiane Garabeli Trojan - Universidade Norte do Paraná Prof. Dr. Darllan Collins da Cunha e Silva - Universidade Estadual Paulista Prof^a Dr^a Deusilene Souza Vieira Dall'Acqua – Universidade Federal de Rondônia Prof. Dr. Eloi Rufato Junior - Universidade Tecnológica Federal do Paraná Prof. Dr. Fábio Steiner - Universidade Estadual de Mato Grosso do Sul Prof. Dr. Gianfábio Pimentel Franco - Universidade Federal de Santa Maria Prof. Dr. Gilmei Fleck - Universidade Estadual do Oeste do Paraná Prof^a Dr^a Girlene Santos de Souza - Universidade Federal do Recôncavo da Bahia Profa Dra Ivone Goulart Lopes - Istituto Internazionele delle Figlie de Maria Ausiliatrice Profa Dra Juliane Sant'Ana Bento - Universidade Federal do Rio Grande do Sul Prof. Dr. Julio Candido de Meirelles Junior - Universidade Federal Fluminense Prof. Dr. Jorge González Aguilera - Universidade Federal de Mato Grosso do Sul Prof^a Dr^a Lina Maria Goncalves – Universidade Federal do Tocantins Profa Dra Natiéli Piovesan – Instituto Federal do Rio Grande do Norte Prof^a Dr^a Paola Andressa Scortegagna – Universidade Estadual de Ponta Grossa Profa Dra Raissa Rachel Salustriano da Silva Matos - Universidade Federal do Maranhão Prof. Dr. Ronilson Freitas de Souza - Universidade do Estado do Pará Prof. Dr. Takeshy Tachizawa - Faculdade de Campo Limpo Paulista Prof. Dr. Urandi João Rodrigues Junior - Universidade Federal do Oeste do Pará Prof. Dr. Valdemar Antonio Paffaro Junior - Universidade Federal de Alfenas Prof^a Dr^a Vanessa Bordin Viera – Universidade Federal de Campina Grande

Dados Internacionais de Catalogação na Publicação (CIP) (eDOC BRASIL, Belo Horizonte/MG)

Prof^a Dr^a Vanessa Lima Gonçalves – Universidade Estadual de Ponta Grossa Prof. Dr. Willian Douglas Guilherme – Universidade Federal do Tocantins

Impactos das tecnologias na engenharia química [recurso eletrônico] /
Organizadora Carmen Lúcia Voigt. – Ponta Grossa (PR): Atena
Editora, 2019. – (Impactos das Tecnologias na Engenharia
Química; v. 1)

Formato: PDF

Requisitos de sistema: Adobe Acrobat Reader.

Modo de acesso: World Wide Web.

Inclui bibliografia

ISBN 978-85-7247-237-1

DOI 10.22533/at.ed.371190304

1. Engenharia química – Pesquisa – Brasil. I. Voigt, Carmen Lúcia. II. Série.

CDD 660.76

Elaborado por Maurício Amormino Júnior - CRB6/2422

O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores.

2019

Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.

www.atenaeditora.com.br

APRESENTAÇÃO

Inovações tecnológicas surgem a todo o momento, em todo o mundo, sendo utilizadas como uma ferramenta estratégica para manutenção e crescimento dos negócios nas indústrias. A Engenharia Química foi uma das carreiras que mais contribuiu para a evolução da Era Industrial para a Era Moderna.

A preocupação em desenvolver produtos e processos de produção torna a Engenharia Química responsável por pesquisas e projetos em relação aos materiais que passam por mudanças físicas e químicas, adquirindo outras características.

A Engenharia Química trabalha com a manipulação de compostos e substâncias para se criar novos produtos. Estes produtos proporcionam uma melhoria na qualidade de vida humana, pois além de pesquisas relacionadas, existe a preocupação em viabilizar as invenções, criar métodos baratos e eficientes de fabricação em massa, implementando processos químico-industriais cada vez melhores, mais econômicos e mais ecológicos.

Neste primeiro volume, organizado para você, apresentamos o papel do Engenheiro Químico no mercado de trabalho, pois este aplica conhecimentos adquiridos no estudo de Química e de Engenharia para criar soluções voltadas à produção ou ao uso de substâncias químicas. É o profissional que constrói um elo entre a ciência e a manufatura. Cabe ao engenheiro químico lidar com a formulação e a solução de problemas associados à indústria química, bem como trabalhar na operação e manutenção de sistemas. Também são expostos, neste volume, trabalhos relacionados ao ensino teórico e prático de Engenharia Química.

Além disso, encontram-se trabalhos relacionados com aplicações estatísticas, simulações e otimização de processos para melhoria de utilização de produtos e subprodutos. Assim como são expostos trabalhos de caracterização de materiais e alterações em processos químicos utilizando novas técnicas de análise de produto, avaliando comportamento, característica de sistemas, propriedades físico-químicas e alteração de composição de produtos já utilizados no mercado.

Baseado nestes trabalhos, convidamos você a aperfeiçoar seus conhecimentos na área da Engenharia Química. Os trabalhos selecionados oportunizam uma nova visão de materiais, processos e técnicas na área, mostrando o impacto tecnológico no desenvolvimento da indústria e sua relação direta com a sociedade e meio ambiente.

Boa leitura.

Carmen Lúcia Voigt

SUMÁRIO

CAPÍTULO 11
O PAPEL DO ENGENHEIRO QUÍMICO NO MERCADO DE TRABALHO: PRODUÇÃO DE UM GUIA PRÁTICO DIGITAL DESTINADO AOS GRADUANDOS E DEMAIS INTERESSADOS NA PROFISSÃO
Raphael Carlos Rosa Pereira Eder Dias da Silva
DOI 10.22533/at.ed.3711903041
CAPÍTULO 28
GAMEQ: JOGO PARA O ENSINO NA ENGENHARIA QUIMICA
Riccardo Cafagna Miguel do Valle Fróes Negreiros Falcão Felipe Emmanouil Martires Stamoglou Ana Lucia Barbosa de Souza Ewerton Emmanuel da Silva Calixto Fernando Luiz Pellegrini Pessoa
DOI 10.22533/at.ed.3711903042
CAPÍTULO 317
ELABORAÇÃO E AUTOMAÇÃO DE PROTÓTIPO DE REATOR CSTR CONSTRUÍDO COM MATERIAIS DE BAIXO CUSTO VOLTADO À EDUCAÇÃO DE ENGENHARIA QUÍMICA Cristiane Daliassi Ramos de Souza Sauro Franceschi de Carvalho Emeson de Souza Lemos Kevelyn Carolina Motta Sbravati DOI 10.22533/at.ed.3711903043
CAPÍTULO 427
PROJETO DE DIMENSIONAMENTO DE MÓDULO CONTÍNUO A PARTIR DE MATERIAIS DE BAIXO CUSTO COMO IMPLEMENTAÇÃO DO ENSINO EXPERIMENTAL DE ENGENHARIA QUÍMICA Cristiane Daliassi Ramos de Souza Igor Moraes Bezerra Calixto Sauro Franceschi de Carvalho Matheus Macedo Teixeira Rafaela Misseia Cinque de Lima Marco Antônio de Alcântara Rocha DOI 10.22533/at.ed.3711903044
CAPÍTULO 536
O SIMULADOR DO FUTURO APLICADO À INDÚSTRIA Fernanda Martins DOI 10.22533/at.ed.3711903045
CAPÍTULO 643
TERMODINÂMICA QUÍMICA – COMPREENDENDO DE FORÇAS INTERMOLECULARES A COEFICIENTE DE ATIVIDADE Lisandra Ferreira de Lima Admilson Lopes Vieira DOI 10.22533/at.ed.3711903046

CAPÍTULO 753
DETERMINAÇÃO DE CURVAS DE EQUILÍBRIO SÓLIDO-LÍQUIDO DE SOLVENTES EUTÉTICOS PROFUNDOS (DES) EMPREGANDO A CALORIMETRIA EXPLORATÓRIA DIFERENCIAL (DSC)
Helena Pletsch Mariana Carolina Gipiela Corrêa Dias Marcos Rogério Mafra
DOI 10.22533/at.ed.3711903047
CAPÍTULO 859
ANÁLISE E DIAGNÓSTICO DE FALHAS POR TÉCNICAS ESTATÍSTICAS APLICADAS A SISTEMAS DE BOMBEAMENTO HIDRÁULICO
Rebeca Albino de Jesus Ezequiel José da Silva Honorato Fábio George Nogueira Cruz José Nilton Silva
DOI 10.22533/at.ed.3711903048
CAPÍTULO 973
COMPARAÇÃO DE PERFIS DE VELOCIDADE OBTIDOS POR TUBO DE PITOT E POR SOFTWARE DE SIMULAÇÃO ANSYS CFX
Victor Felipe Arthur Coutinho Ladeia Rosilanny Soares Carvalho
Anna Clara Marques de Queiroz
João Carlos Gonçalves
DOI 10.22533/at.ed.3711903049
CAPÍTULO 1080
ENGENHARIA DE PROCESSOS: DIMENSIONAMENTO, SIMULAÇÃO E ANÁLISE DE SENSIBILIDADE DE SISTEMAS DE EVAPORAÇÃO MÚLTIPLO EFEITO DE INDÚSTRIAS DE CELULOSE <i>KRAFT</i>
Jamilly Marques Gasparoni Cássia Regina Santos Nunes Almeida
Gustavo Matheus de Almeida
DOI 10.22533/at.ed.37119030410
CAPÍTULO 1196
PROJETO DE HIDROCICLONES USANDO OTIMIZAÇÃO ROBUSTA E ESTUDO DO EFEITO DA ROBUSTEZ
Vitor Alves Garcia Fran Sérgio Lobato
Luiz Gustavo Martins Vieira DOI 10.22533/at.ed.37119030411
CAPÍTULO 12
SELEÇÃO DE VARIÁVEIS E CONTROLE DE COMPOSIÇÃO POR INFERÊNCIA DE TEMPERATURA EM PROCESSO PRODUTIVO DO ETILBENZENO
Arioston Araújo de Morais Júnior Leopoldo Oswaldo Alcazar Rojas
Paulo Romero de Araujo Mariz
Emanuella Francisca de Lacerda Vieira Marcelo da Silva Pedro
Jonas Laedson Marinho da Silva Santos
DOI 10.22533/at.ed.37119030412

CAPÍTULO 13 119
INFLUÊNCIA DA VARIAÇÃO DE PH, TEMPERATURA E TEMPO DE VAPORIZAÇÃO NO PROCESSO DE TINGIMENTO DE TECIDOS
Wanyr Romero Ferreira Wilson Costa Resende Aline Pereira Leite Nunes
DOI 10.22533/at.ed.37119030413
CAPÍTULO 14128
ANÁLISE CORROSIVA DO AÇO 304 QUANDO SUBMETIDO AO PROCEDIMENTO DE GALVANOPLASTIA
Renata de Oliveira Marinho Marcelo Batista Queiroz Eudesio Oliveira Vilar Márcia Cristina de Sousa
DOI 10.22533/at.ed.37119030414
CAPÍTULO 15140
EFEITO DA DENSIDADE DE CORRENTE NO PROCESSO DE OBTENÇÃO DE REVESTIMENTOS DE Co-W OBTIDOS POR ELETRODEPOSIÇÃO
Arthur Filgueira de Almeida Bianca Oliveira Evaristo Josiane Dantas Costa Mikarla Baía de Sousa Nathália Cristina Morais Lia Fook Renato Alexandre Costa de Santana Ana Regina Nascimento Campos
DOI 10.22533/at.ed.37119030415
CAPÍTULO 16148
FILTRO DE KALMAN ESTENDIDO E REDE NEURAL ARTIFICIAL NA ESTIMATIVA DE CONCENTRAÇÃO EM UM REATOR QUÍMICO NÃO ISOTÉRMICO Arioston Araújo de Morais Júnior Leopoldo Oswaldo Alcazar Rojas Marcelo da Silva Pedro Paulo Romero de Araujo Mariz Emanuella Francisca de Lacerda Vieira Jonas Laedson Marinho da Silva Santos Rodrigo Marinho Guimarães DOI 10.22533/at.ed.37119030416
CAPÍTULO 17153
COMPÓSITO DE NANOCELULOSE BACTERIANA E NANOTUBOS DE CARBONO
Guilherme Colla Vinícius Heidemann de Souza Fernanda Vieira Berti Luismar Marques Porto
DOI 10.22533/at.ed.37119030417

CAPÍTULO 18160
IMOBILIZAÇÃO DE COLÁGENO HUMANO TIPO I EM MEMBRANAS DE NANOCELULOSE BACTERIANA
Ana Carolina Jorge Meyer Emily Marques dos Reis Luismar Marques Porto
DOI 10.22533/at.ed.37119030418
CAPÍTULO 19167
CENTRIFUGATION STEP CONTROL OF CELLULOSE NANOCRYSTALS SUSPENSION BY pH AND TURBIDITY MEASUREMENTS
Mayara Felix Santana Bárbara Castro Moreira Flávia Mitsue Yamashita Nilda de Fátima Ferreira Soares José Mauro de Almeida Alvaro Vianna Novaes de Carvalho Teixeira Deusanilde de Jesus Silva
DOI 10.22533/at.ed.37119030419
CAPÍTULO 20173
ESTUDO TERMODINÂMICO DA ADSORÇÃO DO CORANTE CRISTAL VIOLETA EM NANOTUBOS DE CARBONO FUNCIONALIZADOS Leonardo Martins Vargas Gabriel Facciochi Dörtzbacher Guilherme Luiz Dotto DOI 10.22533/at.ed.37119030420
CAPÍTULO 21181
ESTUDO DA REOLOGIA E DA SALINIDADE DE MICROEMULSÕES À BASE DE GLICERINA PARA SEREM UTILIZADAS NA RECUPERAÇÃO DE PETRÓLEO Amanda Brito de Carvalho Fabíola Dias da Silva Curbelo Elayne Andrade Araújo Alfredo Ismael Curbelo Garnica
DOI 10.22533/at.ed.37119030421
CAPÍTULO 22
Renata Rodrigues Magalhães Roxana Pereira Fernandes de Sousa Alfredo Ismael Curbelo Garnica Fabíola Dias da Silva Curbelo Thaine Taumaturgo Caminha DOI 10.22533/at.ed.37119030422

CAPITULO 23201
PROPRIEDADES FISICO-QUÍMICAS E VOLUMÉTRICAS DO QUEROSENE DE AVIAÇÃO E DO BIOQUEROSENE
Idila Rafaela Carvalho Gonçalves
Ana Clara Cazarin Queiroz Luciana Loureiro de Pinho Rolemberg de Andrade
Silvia Maria Zanini Sebrão
Krishnaswamy Rajagopal
DOI 10.22533/at.ed.37119030423
CAPÍTULO 24210
AVALIAÇÃO REOLÓGICA DE TINTAS ACRÍLICAS COMERCIAIS E ADITIVADAS COM CARGA CONDUTORA
Alex da Silva Sirqueira
Monica Cristina dos Santos Vieira Monica Feijó Naccache
Stanley Pires de Alcântara
DOI 10.22533/at.ed.37119030424
CAPÍTULO 25222
EFEITO DA ADIÇÃO DA CINZA GASEIFICADA DE CARVÃO PULVERIZADO NA FORMULAÇÃO DE CERÂMICA VERMELHA
Gabryella Cerri Mendonça Cristiano Corrêa Ferreira
DOI 10.22533/at.ed.37119030425
CAPÍTULO 26232
TRANSFERÊNCIA DE CALOR EM SISTEMAS PARTICULADOS: DETERMINAÇÃO DA CONDUTIVIDADE TÉRMICA EFETIVA DE FERTILIZANTES GRANULADOS NA ESTAGNAÇÃO DE AR
Hugo Perazzini
Maisa Tonon Bitti Perazzini
Rayssa Caroline Ribeiro Bernardes João Marcos Cardoso Silva
DOI 10.22533/at.ed.37119030426
CAPÍTULO 27
DETERMINAÇÃO DA SOLUBILIDADE DA UREIA EM SOLUÇÕES AQUOSAS DE ETANOL
Raquel de Oliveira Silva Ana Paula Silva Capuci
Raíssa Araújo de Oliveira Campos
Ricardo Amâncio Malagoni
DOI 10.22533/at.ed.37119030427
CAPÍTULO 28255
CALIBRAÇÃO DE MEDIDORES DE VAZÃO COM ALTAS VAZÕES E VISCOSIDADES ELEVADAS UMA ALTERNATIVA TÉCNICA À LEGISLAÇÃO BRASILEIRA DE ROYALTIES E PARTICIPAÇÕES ESPECIAIS
Carlos Eduardo Ribeiro de Barros Barateiro Romulo Carlos da Silva Emerik
DOI 10.22533/at.ed.37119030428
SOBRE A ORGANIZADORA271

CAPÍTULO 20

ESTUDO TERMODINÂMICO DA ADSORÇÃO DO CORANTE CRISTAL VIOLETA EM NANOTUBOS DE CARBONO FUNCIONALIZADOS

Leonardo Martins Vargas

Universidade Federal de Santa Maria, Departamento de Engenharia Química

Gabriel Facciochi Dörtzbacher

Universidade Federal de Santa Maria, Departamento de Engenharia Química

Guilherme Luiz Dotto

Universidade Federal de Santa Maria, Departamento de Engenharia Química

RESUMO: trabalho O presente teve como objetivo investigar o comportamento remoção do corante termodinâmico da Cristal Violeta de soluções aquosas através da adsorção em nanotubos de carbono funcionalizados (CNT). Utilizando soluções sintéticas de corante, realizou-se o estudo cinético e termodinâmico. O equilíbrio da adsorção foi atingido em 60 minutos. Os modelos de Pseudo-segunda ordem e Elovich foram adequados para representar a cinética de adsorção. O modelo de Freundlich foi o mais adequado para representar os dados do equilíbrio. As capacidades de adsorção máxima foram de 850,9 mg g⁻¹ e 852,8 mg g⁻¹ para os CNT-OH e CNT-COOH, respectivamente. Termodinamicamente, o processo é espontâneo e favorável, endotérmico e caracterizado por adsorção química. Ambos os nanotubos foram adsorventes de alta capacidade para remoção

do corante Cristal Violeta de soluções aquosas. **PALAVRAS CHAVE:** cristal violeta, adsorção, nanotubos de carbono

ABSTRACT: The present work aimed to investigate the thermodynamic behavior of the removal of the crystal violet dye from aqueous solutions through adsorption in functionalized carbon nanotubes (CNT). Using synthetic dye solutions, the kinetic and thermodynamic studies were carried out. The adsorption equilibrium was reached in 60 minutes. The models of Pseudo-second order and Elovich were suitable to represent the kinetics of adsorption. The Freundlich model was the most adequate to represent the equilibrium data. The maximum adsorption capacity was 850.9 mg g-1 and 852.8 mg g-1 for CNT-OH and CNT-COOH, respectively. Thermodynamically, the process is spontaneous and favorable, endothermic and characterized by chemical adsorption. Both nanotubes were high capacity adsorbents for removal of Violet Crystal dye from aqueous solutions.

KEYWORDS: violet crystal, adsorption, carbon nanotubes

1 I INTRODUÇÃO

Com a grande capacidade do carbono de formar diversas ligações químicas, há formações

de diferentes formas alotrópicas. Uma dessas formas alotrópicas são os nanotubos de carbono (CNT). Esses nanomateriais têm suas propriedades físicas determinadas pela sua morfologia, quantidade de camadas que possuem e pelo seu tamanho. São encontrados CNT com múltiplas (MWCNTs) e simples (SWCNTs) camadas. As propriedades físicas do CNT podem ser alteradas através da sua funcionalização, que são feitas através da adição de grupos químicos, como os grupos hidroxila (OH) e carboxila (COOH), através de ligações covalentes, melhorando a interação com o meio em que será aplicado, uma vez que a superfície do CNT que antes era hidrofóbica, passa a ser hidrofílica. O corante Cristal Violeta (CV) é um corante catiônico, que é utilizado tanto na indústria têxtil, e também como agente dermatológico. Os CNT funcionalizados são bastante versáteis, com aplicações que abrangem diferentes áreas do conhecimento e promovem uma grande aplicação na recuperação de efluentes industriais, como efluentes de indústrias têxteis, que geram resíduos de corantes sintéticos, que podem ter efeitos carcinogênicos, mutagênicos ou tóxicos na fauna e flora. A utilização dos CNT funcionalizados é altamente recomendada, uma vez que possuem alta eficiência e um baixo custo de operação.

2 I MATERIAL E MÉTODOS

2.1 Adsorbato e adsorvente

As soluções de adsorbato foram preparadas utilizando o corante Cristal Violeta sólido (Synth, 99%) e água deionizada. Foram utilizadas soluções sem correção de pH, no valor de 7,6.

Os nanotubos de carbono (90+%) foram funcionalizados com os grupos químicos OH (0,72-0,79%) e COOH (0,40-0,54%), ambos possuem pequenas quantidades de ferro, níquel e enxofre.

2.2 Ensaios de Adsorção

Os experimentos de adsorção foram realizados em modo batelada, em triplicata e com testes de branco. Todos os ensaios utilizaram volume fixo de 50 mL de solução de adsorbato, sob agitação constante de 150 rpm. A massa de adsorvente (0,25 g L⁻¹) e o pH (sem correção) ótimos do processo foram determinados por ensaios preliminares. O estudo cinético foi realizado variando-se o tempo de contato de 0 a 180 minutos, nas concentrações de adsorbato de 50, 100, 200 e 300 mg L⁻¹. O tempo necessário para atingir o equilíbrio foi utilizado na construção das isotermas a 25, 35, 45 e 55 °C, variando-se a concentração do adsorbato de 50 a 500 mg L⁻¹. Ao final dos ensaios, a fase sólida foi separada por filtração, sem interação com o adsorbato. A concentração do adsorbato foi determinada por espectrofotometria através de curva padrão, considerando-se o comprimento de onda do corante CV de 590 nm.

174

As capacidades de adsorção no tempo t (q_t) e no equilíbrio (q_e) foram obtidas pela Equação 1 e Equação 2, onde C_0 , C_t e C_e $(mg\ L^{-1})$ são a concentrações de adsorbato na fase líquida inicial, no tempo t e no equilíbrio, respectivamente; m (g) é a massa de adsorvente e V (L) é o volume de solução.

$$q_t = \frac{\left(C_0 - C_t\right)}{m}V\tag{1}$$

$$q_e = \frac{\left(C_0 - C_e\right)}{m}V\tag{2}$$

O percentual de remoção de corante (%R) é expresso através da Equação 3:

$$%R = \frac{(C_0 - C_e)}{C_0} 100$$
 (3)

2.3 Cinética de adsorção

Os dados cinéticos foram ajustados aos modelos de pseudo-primeira (Equação 4) e pseudo-segunda ordem (Equação 5), onde q_1 e q_2 (mg g^{-1}) são as capacidades teóricas de adsorção; k_1 (min⁻¹) e k_2 (g mg⁻¹min⁻¹) são as constantes cinéticas de pseudo-primeira ordem e pseudo-segunda ordem, respectivamente.

$$q_t = q_1(1 - \exp(-k_1 t))$$
 (4)

$$q_t = \frac{t}{(1/k_2q_2^2) + (t/q_2)} \tag{5}$$

Além disso, processos que envolvem quimiossorção em superfície sólida podem ser representados pelo modelo de Elovich (Equação 6), onde 'b' é a constante de dessorção do modelo de Elovich (g mg⁻¹) e 'a' é a velocidade inicial da adsorção (mg g⁻¹ min⁻¹), quando q,=0.

$$q_t = \frac{1}{a}\ln(1+abt) \tag{6}$$

2.4 Equilíbrio de adsorção

Os dados experimentais obtidos no estudo do equilíbrio foram ajustados nos modelos de isotermas de Freundlich (Equação 7), Langmuir (Equação 8) e Redlich-Peterson (Equação 9).

O modelo de Freundlich inclui a constante de Freundlich kF ((mg g⁻¹)/(L mg⁻¹)^{1/n}) e o fator de heterogeneidade 1/nF. A constante de Langmuir é representada por kL (L mg⁻¹) e a capacidade máxima de adsorção por qm (mg g⁻¹).

$$q_e = k_F C_e^{1/n_F} \tag{7}$$

$$q_e = \frac{q_m k_L C_e}{1 + (k_L C_e)} \tag{8}$$

2.5 Estudo termodinâmico

As características da adsorção nos CNT foram mensuradas através dos parâmetros termodinâmicos como a energia livre de Gibbs (ΔG), entalpia de adsorção (ΔH) e entropia de adsorção (ΔS). Estes valores indicam se o processo é espontâneo, endotérmico ou exotérmico, e oferecem informações sobre a heterogeneidade do adsorvente. A energia livre ΔG pode ser calculada através de Equação 9, onde k_D é a constante de equilíbrio termodinâmico ($L mg^{-1}$), que pode ser obtida plotando Ce/qe versus Ce e extrapolando Ce para zero, R é a constante universal dos gases (8,31x10 $^{-1}$ KJ mol $^{-1}$ K $^{-1}$) e T é a temperatura (K).

$$\Delta G = -RT \ln k_D \tag{9}$$

Os parâmetros termodinâmicos ΔH e ΔS foram determinados através do gráfico de Van't Hoff, ajustando os dados à Equação 10 e obtendo-se um coeficiente angular $\Delta H/RT$ e uma intercepção $\Delta S/R$.

$$\ln k_D = \frac{-\Delta H}{RT} + \frac{\Delta S}{R} \tag{10}$$

3 I RESULTADOS E DISCUSSÃO

3.1 Estudo cinético

Os dados obtidos no estudo cinético estão exibidos na Figura 1 (a) e (b),

respectivamente, para OH e COOH. O comportamento do sistema foi semelhante para ambos os adsorventes devido à semelhança física dos materiais. A capacidade de adsorção atingiu o equilíbrio em cerca de 60 minutos em todas as concentrações.

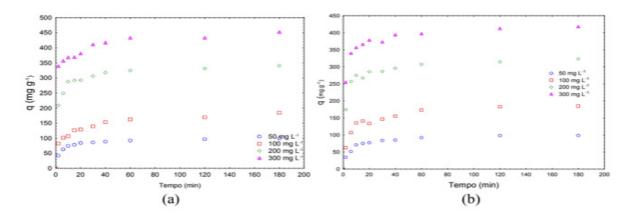


Figura 1 – Capacidade de adsorção em função do tempo para CNT OH (a) e COOH (b).

Para ambos os adsorventes, os modelos de Pseudo-segunda ordem e Elovich foram adequados para representar o processo, com R² mais próximo de 1 e menor EMR. As constantes de cada modelo e os parâmetros de ajuste podem ser encontrados nas Tabelas 1 e 2.

Isotermas	50 mg L ⁻¹	100 mg L ⁻¹	200 mg L ⁻¹	300 mg L ⁻¹
Pseudo-primeira ordem				
q ₁ (mg g ⁻¹)	91,5	163,7	309,1	385,3
k ₁ (min ⁻¹)	0,14	0,17	0,46	0,49
R ²	0,9527	0,9291	0,9690	0,9718
EMR (%)	8,31	8,89	4,68	4,53
Pseudo-segunda ordem				
q ₂ (mg g ⁻¹)	98,9	180,4	312,7	405,7
k ₂ (g mg ⁻¹ min ⁻¹)	2,1x10 ⁶	1,4x10 ⁶	1,9x10 ⁶	53x10 ⁶
R ²	0,9910	0,9774	0,9918	0,9948
EMR (%)	3,90	4,74	2,25	1,66
Elovich				
a (mg g ⁻¹ min ⁻¹)	7,6x10 ⁻²	3,8x10 ⁻²	3,5x10 ⁻²	3,1x10 ⁻²
b (g mg ⁻¹)	175	254	22520	133444
R ²	0,9673	0,9740	0,9733	0,9829
EMR (%)	7,73	5,45	4,34	3,54

Tabela 1 – Parâmetros cinéticos para os CNT OH

Isotermas	50 mg L ⁻¹	100 mg L ⁻¹	200 mg L ⁻¹	300 mg L ⁻¹
Pseudo-primeira ordem				
q ₁ (mg g ⁻¹)	91,6	156,8	309,1	403,2
k ₁ (min ⁻¹)	0,20	0,15	0,47	0,89
\mathbb{R}^2	0,9495	0,8531	0,9480	0,9397
EMR (%)	7,77	12,66	6,26	6,21

Pseudo-segunda ordem				
q ₂ (mg g ⁻¹)	98,1	170,4	327,5	419,1
k ₂ (g mg ⁻¹ min ⁻¹)	3,0x10 ⁶	1,2x10 ⁶	25x10 ⁶	109x10 ⁶
R ²	0,9936	0,9400	0,9877	0,9668
EMR (%)	2,71	7,66	2,96	4,76
<i>Elovic</i> h				
a (mg g ⁻¹ min ⁻¹)	8,9x10 ⁻²	4,2x10 ⁻²	3,5x10 ⁻²	3,6x10 ⁻²
b (g mg ⁻¹)	605	297	4,2x10 ⁴	2,6x10 ⁶
R ²	0,9727	0,9931	0,9890	0,9951
EMR (%)	5,78	2,64	2,93	1,82

Tabela 2 – Parâmetros cinéticos para os CNT COOH

3.2 Isotermas de adsorção

As isotermas de equilíbrio obtidas nas temperaturas de 25, 35, 45 e 55 °C são apresentadas na Figura 2 (a) e (b). As isotermas foram caracterizadas por uma etapa inicial de crescimento da capacidade de adsorção seguida de um platô, representando a diminuição dos sítios ativos disponíveis e a saturação da monocamada de adsorção. As capacidades de adsorção máxima experimental foram de 850,9 mg g⁻¹ e 852,8 mg g⁻¹ para os CNT OH e COOH, respectivamente.

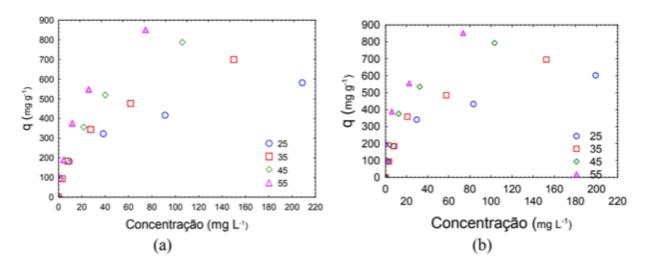


Figura 2 – Capacidade de adsorção em função da concentração CNT OH (a) e COOH (b).

Os parâmetros obtidos no ajuste das curvas experimentais aos modelos podem ser conferidos nas Tabelas 3 e 4. A verificação da qualidade dos ajustes através de R² e EMR mostra que o modelo de Freundlich foi adequado para representar a adsorção do corante CV nos CNT OH e COOH.

Isotermas	25 °C	35°C	45 °C	55 °C
Langmuir				
q _m (mg L ⁻¹)	619	844	1069	1096
k _L (L mg ⁻¹) x10 ⁻²	3,3	2,6	2,5	4,4
R ²	0,9529	0,9834	0,9904	0,9952
EMR (%)	19,89	12,08	12,91	8,25
Freundlich				
k _F	83,7	72,7	77,6	106,8
$n_{_{F}}$	2,76	2,20	1,99	2,06
R ²	0,9989	0,9967	0,9971	0,9929
EMR (%)	1,85	6,05	4,21	10,16

Tabela 3 – Parâmetros de isotermas para os CNT OH

Isotermas	25 °C	35°C	45 °C	55 °C
Langmuir				
q _m (mg L ⁻¹)	620	796	905	877
$k_{L} (L mg^{-1}) x 10^{-2}$	3,29	3,5	5,5	12,7
R ²	0,9714	0,9897	0,9900	0,9543
EMR (%)	12,77	5,64	9,89	20,44
Freundlich				
	90,2	84,3	121,3	185,5
$n_{_{\rm F}}$	2,8	2,4	2,4	2,8
R ²	0,9917	0,9828	0,9892	0,9947
EMR (%)	7,25	13,64	12,17	8,60

Tabela 4 – Parâmetros de isotermas para os CNT COOH

3.3 Estudo termodinâmico

O comportamento termodinâmico da adsorção do corante CV nos CNT OH e COOH foi caracterizado através da entalpia, da entropia e da energia livre de Gibbs. Os valores destes parâmetros são apresentados na Tabela 5.

Os valores negativos de ΔG mostram que a adsorção do corante em ambos os adsorventes foi um processo espontâneo e favorável. A diminuição de ΔG com o aumento da temperatura indica que a adsorção é facilitada em altas temperaturas.

A entalpia positiva em ambos os casos confirma a natureza endotérmica do processo de adsorção. Os valores superiores a 20 kJ mol $^{-1}$, na ordem de entalpias de reação, caracterizam uma adsorção química. Os valores positivos de ΔS sugerem que a desordem na interface sólido-líquido aumentou durante o processo de adsorção. Os valores positivos de ΔH e ΔS apontam que a entalpia contribuiu mais que a entropia para a espontaneidade da reação (ΔG).

Adsorvente	Temperatura (K)	ΔG (kJ mol-1)	ΔH (kJ mol-1)	ΔS (kJ mol-1 K-1)
ONTOU	298	-24,57		
	308	-25,59	01.00	0.15
CNT OH	318 -26,92	21,90	0,15	
	328	-29,35		
	298	298 -24,57		
CNT COOH	308	-26,18	45,48	0.00
	318	-28,55		0,23
	328	-31,63		

Tabela 5 – Parâmetros termodinâmicos

4 I CONCLUSÃO

Com base nos resultados apresentados, pode-se concluir que os CNT funcionalizados com OH e COOH seguem comportamentos semelhantes e são alternativas eficientes para a remoção do corante Cristal Violeta de soluções aquosas, quando comparados a outros adsorventes. Demonstrou-se que o processo de adsorção é espontâneo e favorável, endotérmico e caracterizado por uma adsorção química. As capacidades de adsorção máxima experimental encontradas foram de 850,9 mg g⁻¹ e 852,8 mg g⁻¹ para os CNT OH e COOH, respectivamente.

REFERÊNCIAS

MALARVIZHIA, R; HO, Y. S. The influence of pH and the structure of the dye molecules on adsorption isotherm modeling using activated carbono. Desalin., v. 264, p. 97, 2010.

BERTOLINI, T. C. R.; IZIDORO, J. C.; MAGDALENA, C. P.; FUNGARO, D. A. **Adsorption of Crystal Violet Dye from Aqueous Solution onto Zeolites from Coal Fly and Bottom Ashes.** Orbital: Electron. J. Chem., v. 5, n. 3, p. 186, 2013.

FILHO, A. G.de. S. FUNCIONALIZAÇÃO DE NANOTUBOS DE CARBONO. Quim. Nova, Vol. 30, No. 7, 1695-1703, 2007.

DALLAGO, R. G., SMANIOTTO, A. **RESIDUOS SÓLIDOS DE TAL.** Quim. Nova, v. 28, n 3, p. 433-437, 2005.

SOBRE A ORGANIZADORA

CARMEN LÚCIA VOIGT Doutora em Química na área de Química Analítica e Mestre em Ciência e Tecnologia de Alimentos pela Universidade Estadual de Ponta Grossa. Especialista em Química para a Educação Básica pela Universidade Estadual de Londrina. Graduada em Licenciatura em Química pela Universidade Estadual de Ponta Grossa. Experiência há mais de 10 anos na área de Educação com ênfase em avaliação de matérias-primas, técnicas analíticas, ensino de ciências e química e gestão ambiental. Das diferentes atividades desenvolvidas destaca-se uma atuação por resultado, como: supervisora de laboratórios na indústria de alimentos; professora de ensino médio; professora de ensino superior atuando em várias graduações; professora de pós-graduação *lato sensu*; palestrante; pesquisadora; avaliadora de artigos e projetos; revisora de revistas científicas; membro de bancas examinadoras de trabalhos de conclusão de cursos de graduação. Autora de artigos científicos. Atuou em laboratório multiusuário com utilização de técnicas avançadas de caracterização e identificação de amostras para pesquisa e pós-graduação em instituição estadual.

Agência Brasileira do ISBN ISBN 978-85-7247-237-1

9 788572 472371