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RESUMO:Este capitulo apresenta a modelagem matematica e a estimacdo bayesiana
de parametros cinéticos aplicadas a um processo de remocao de poluentes por
crescimento microbiano, com base no modelo proposto por Mohiuddin etal. (2022). 0
sistema foi descrito por equacdes diferenciais ordindrias que representam a dinamica
da biomassa microbiana e o consumo dos substratos carbono, nitrogénio e fésforo.
O problema direto foi resolvido numericamente no MATLAB®, utilizando o solver
ode15s, permitindo reproduzir de forma coerente o comportamento qualitativo
das variaveis experimentais. A analise de sensibilidade indicou que o parametro
associado a velocidade maxima de crescimento microbiano (pMax) e a constante
de meia saturacdo do carbono (K_) exercem maior influéncia sobre as dinamicas,
enquanto os demais parametros apresentaram sensibilidade reduzida nas condi¢des
analisadas. Observou-se ainda dependéncia linear entre p,,_ e K, inviabilizando a
estimacdo simultanea desses parametros. Com base nesses resultados, realizou-se
a estimagdo bayesiana de p,,_ por meio do método de Monte Carlo via Cadeias
de Markov, utilizando o algoritmo Metropolis—Hastings, resultando em um valor
estimado de p,, = 0,5879 h'. A utilizacdo do parametro estimado trouxe bons
ajustes para a biomassa e o carbono, com coeficientes de determinacdo de R?=
0,9080 e R?=0,9446, respectivamente. J& para o nitrogénio e fésforo os ajustes
nao foram tdo adequados, com coeficientes de determinacao (R?) de 0,8513 para
o nitrogénio e 0,4420 para o fésforo. Os resultados demonstram a eficacia da
abordagem bayesiana na estimacdo de parametros cinéticos e na quantificacdo
das incertezas associadas ao modelo.

PALAVRAS-CHAVE: modelagem matematica; estimacdo bayesiana; Monte Carlo via
Cadeias de Markov; analise de sensibilidade; remocdo de poluentes.

Kinetic Modeling and Parameter Estimation in
Pollutant Removal via Microbial Growth

ABSTRACT: This chapter presents the mathematical modeling and Bayesian parameter
estimation applied to a pollutant removal process based on microbial growth, using
the model proposed by Mohiuddin et al. (2022). The system is described by a set
of ordinary differential equations representing the dynamics of microbial biomass
and the consumption of carbon, nitrogen, and phosphorus substrates. The forward
problem was numerically solved in MATLAB® using the ode15s solver, allowing
a coherent qualitative reproduction of the experimental behavior of the system
variables. Sensitivity analysis indicated that the parameter associated with the
maximum microbial growth rate (i,, ) and the carbon half-saturation constant (K )
exerts the greatest influence on biomass growth and carbon consumption, while the
remaining parameters exhibited reduced sensitivity under the analyzed conditions.
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Alinear dependence between i, and K_preventing their simultaneous estimation.
Based on these results, Bayesian estimation of . was performed using the Markov
Chain Monte Carlo method with the Metropolis—Hastings algorithm, resulting in
an estimated value of p,,_ = 0,5879 h™. The use of the estimated parameter led to
an good agreement between experimental data and simulated curves, particularly
for biomass and carbon, with coefficients of determination of R?= 0,9080 and R?
= 0,9446, respectively. For nitrogen and phosphorus, the obtained R? values were
0,8513 and 0,4420, respectively, reflecting poorer adjustment for those dynamics.
The results demonstrate the effectiveness of the Bayesian approach for estimating
relevant kinetic parameters and for quantifying the uncertainties associated with
the proposed model.

KEYWORDS: mathematical modeling; Bayesian estimation; Markov Chain Monte
Carlo; sensitivity analysis; pollutant removal.

INTRODUCAO

A preocupacdo com os recursos hidricos tem sido cada vez mais enfatizada ao
longo do tempo devido a sua ampla utilizacdo nos setores industrial, agropecuario e
doméstico. Além do uso direto, os corpos d'agua constituem ambientes que abrigam
diversas comunidades bioldgicas e desempenham papel essencial na manutencdo
da vida na Terra. (LOUCKS; JIA, 2011)

Segundo o relatério Water for Prosperity and Peace (UNESCO, 2024), a agricultura
é responsavel por aproximadamente 70% das retiradas globais de dgua doce, seguida
pela industria (20%) e pelo uso doméstico (12%). Além disso, desde a década de
1980, a demanda mundial por dgua doce cresce cerca de 1% ao ano, tendéncia
intensificada pela urbanizacdo e pelo aumento populacional.

Nesse sentido, a poluicdo da dgua surge como resultado da industrializagao,
das praticas agricolas e da insuficiéncia de tratamentos adequados de efluentes.
Destilarias, curtumes, indUstrias téxteis, de celulose, alimenticias e metalurgicas
liberam substancias organicas e inorganicas, metais, solventes e agentes téxicos
que, quando descartados sem tratamento, intensificam a contaminacdo dos corpos
hidricos (Chaudhry; Malik, 2017; Schwarzenbach et al., 2010).

Para mitigar essesimpactos, diversas abordagens tém sido estudadas, entre elas
processos fisicos, quimicos e bioldgicos de tratamento. A biorremediacdo destaca-
se como alternativa promissora, utilizando microrganismos capazes de degradar
compostos contaminantes por meio de sua atividade metabdlica (Madigan; Brock;
Martinko, 2016). Bactérias, microalgas e fungos sdo amplamente aplicados nesses
processos (Harms; Schlosser; Wick, 2011; Khalid et al., 2021)
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A utilizacdo de modelos matematicos permite prever e quantificar a dinamica
de consumo de substrato, crescimento microbiano e formacao de produtos, além de
possibilitar a estimativa de parametros essenciais para a compreensdo e otimizagao
do processo. Modelos podem possuir parametros dificeis ou impossiveis de estimar
utilizando observacdes diretas ou medidas experimentais. Devido a essa dificuldade
de obter os valores dos parametros, utilizou-se a técnica Bayesiana de Monte Carlo
via Cadeia de Markov para inferir os parametros do modelo. (Helcio R.B. Orlande et
al., 2011; Helcio R.B. Orlande; Necati Ozisik, 2021; Saltelli et al., 2020)

Métodos estocdsticos, como o algoritmo de Monte Carlo via Cadeias de Markov
(MCMCQ), permitem inferir parametros de dificil determinacdo analitica (Helcio R.B.
Orlande etal., 2011; Helcio R.B. Orlande; Necati Ozisik, 2021). Este trabalho tem como
objetivo simular e estimar os parametros relevantes do modelo cinético proposto
por Mohiuddin et al. (2022), avaliando seu ajuste aos dados experimentais.

METODOLOGIA

O presente trabalho tem como objetivo estimar os parametros presentes no
modelo cinético proposto por Mohiuddin et al. (2022), utilizando o método de Monte
Carlo via Cadeia de Markov, mais especificamente o algoritmo Metropolis-Hastings.

A primeira etapa é resolver o problema direto, calcular os resultados das equacdes
diferenciais, dadas as condicdes iniciais. O problema direto foi resolvido utilizando
o solver ode15s presente no software MATLAB.

Posteriormente, a analise de sensibilidade é resolvida. A andlise de sensibilidade
€ a etapa que analisa quais parametros exercem maior influéncia sobre o modelo
e quais sdo linearmente dependentes.

A estimativa de parametros é feita apds a analise de sensibilidade, utilizando o
método de Monte Carlo via Cadeia de Markov, resolvido via algoritmo de Metropolis-
Hastings. A estimativa vai permitir o calculo de valores de parametros presentes no
modelo que seriam de dificil obtencdo experimental ou célculo analitico.

PROBLEMA DIRETO

A modelagem do sistema de remocao de poluentes foi realizada com base
no modelo cinético proposto por Mohiuddin et al. (2022), composto por quatro
equacoes diferenciais ordinarias que descrevem a dinamica da levedura e dos
substratos carbono, nitrogénio e fésforo. O conjunto completo dessas equacdes é
apresentado nas Equacdes 1.a-d.
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d[YQGSIL-pmMXYEGSI‘-X C] y [N . P #(1.al

d [Cl+K [N]+Ky [Pl+K,
d—c—-Y x u__ x Yeast, x IC] (V] [P] #(1.b)
dt Cl+K. [NF+K, [PI*K,
d—N=-Y v X U X Yeast,; x [C] x L) x :P] #1.c|
dt " C[Cl+Ke [N]+Ky [Pl+K,
d—P—-YP x i % Yeast, x €], _IN] P #(1.d|
dt Cl+K. N[+Ky [PFK,

Os parametros contidos no sistema séo 6 = [y, , Yeast, K, K, K, Y, Y eY.].
Onde y,, representa a velocidade maxima de crescimento celular; Yeast, representa
a concentracao inicial de levedura; K, K, e K, representam os constantes de meia
saturacdo dos substratos: carbono, nitrogénio e fésforo, respectivamente;e Y, Y, e Y,
representam os coeficientes de rendimento do consumo de cada substrato: carbono,
nitrogénio e fésforo. Ou seja, o quanto de substrato é consumido pelas células.

A solucdo preliminar do problema direto utilizou-se os valores de parametros
disponibilizados no estudo original, apresentados na Tabela 1. Esses valores também
foram adotados como estimativas iniciais para a etapa posterior de estimacao de
parametros, uma vez que fornecem um ponto de partida fisicamente consistente
para o método estocastico empregado.

Parametros Valor Unidade de medida
(VI 0.59 1/h
Yeast, 10 mg/L
K. 33,8 mg/L
K, 1,0021 mg/L
P 1,0061 mg/L
Y, 0,897 mg[C]/mg[Levedural]
Yy, 0,086 mg[N]/mg[Levedura]
Y, 0,013 mg[P]/mg[Levedura]

Tabela 1 - Tabela de Parametros
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Os coeficientes de rendimento podem ser calculados utilizando as medidas finais
e iniciais dos substratos e concentracdo celular, conforme descrito na Equacao (2).

(so-sf]
A — 2)
? |LXf_XO.|

O sistema de equacdes diferenciais ordinarias foi resolvido numericamente
no software MATLAB®, utilizando-se o solver ode15s, apropriado para sistemas
considerados rigidos (stiff). A escolha desse método deve-se a sua estabilidade
numeérica em cendrios onde diferentes varidveis apresentam escalas de variacdo
distintas, caracteristicas de sistemas stiff. (Shampine; Reichelt, 1997)

ANALISE DE SENSIBILIDADE

A analise de sensibilidade foi conduzida com o objetivo de identificar quais
parametros exercem maior influéncia sobre as varidveis de estado do modelo, bem
como verificar a existéncia de possiveis dependéncias lineares entre eles. Essa etapa
é fundamental para determinar quais parametros apresentam impacto significativo
sobre a dindmica do sistema e, portanto, sdo candidatos adequados a estimacao
no problema inverso.

A sensibilidade de uma varidvel de estado Y, em relacdo a um parametro 9}.
é expressa pelo coeficiente de sensibilidade apresentado na Equacéo (3). Esse
coeficiente permite avaliar como pequenas perturbacdes no valor de um parametro
afetam a resposta do modelo. Coeficientes de baixa magnitude indicam que o
parametro exerce pouca influéncia sobre a variavel analisada, enquanto valores
elevados sugerem forte impacto sobre a dindmica do sistema. (Helcio R.B. Orlande
etal.,2011; Helcio R.B. Orlande; Necati Ozisik, 202 1; James Vere Beck; Arnold, 1977)

_BYJ'.

Jij—a—ﬁi-.

©)

Além disso, a andlise dos coeficientes de sensibilidade ao longo do tempo
auxilia na identificacdo de dependéncia linear entre parametros. A presenca desse
fendbmeno compromete a estimacdo simultanea, pois diferentes combinacdes
paramétricas passam a produzir respostas semelhantes, tornando o problema
inverso mal condicionado.

Para mitigar os efeitos de varia¢cdes de escala entre parametros, utilizou-se o
coeficiente de sensibilidade reduzido, apresentado na Equacdo (4). Esse coeficiente
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€ obtido ao multiplicar J; pelo préprio pardametro 6, permitindo comparagdes mais
adequadas entre parametros com ordens de grandeza distintas. (Helcio R.B. Orlande
etal.,2011; Helcio R.B. Orlande; Necati Ozisik, 2021; James Vere Beck; Arnold, 1977)

_ BYI [

Os coeficientes de sensibilidade foram calculados numericamente por meio
do método de diferencas finitas centrais, conforme a Equacéo (5). Esse método foi
escolhido por apresentar maior precisdo em relacdo a diferenca para frente, uma
vez que utiliza perturbac¢des simétricas em torno do ponto de avaliacdo. (Helcio
R.B. Orlande et al., 2011; Helcio R.B. Orlande; Necati Ozisik, 2021; James Vere Beck;
Arnold, 1977)

E Y,(0,,0,,...,0,+£0,,...,0,|-Y,[0,,0,,...,0,-£0,,...,0,|
" 2¢P;

A partir desses calculos, obtiveram-se os coeficientes de sensibilidade reduzidos
apresentados na Tabela 2, os quais serviram de base para selecionar os parametros
estimados na etapa de problema inverso.

X; Yeast C N P
d( Yeast ), dlC, 3N, a(p).
= — ] = — = — = ——
“Max ij uMﬂJlJ aPMaxi i uMaJ(J a#qu[ ij uMﬂ){J a“Max; XU Hax ap i
 dlYeast], e, __aIN|, __alp),
K XTKar  NiTKagx, XitKegg,  XiTKegg,
_ dlYeast), __élc); __ 3[N|, __olp),
S XK XitKugg, YT Kk, XiTKegg,
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0|Yeast ; alc); "= 0[N, _ aP|,

X--=KPJ‘TN Xi=Kegx, =Ko gg, T

P ij

Onde X, € o coeficiente de sensibilidade reduzido

Tabela 2 — Coeficientes de sensibilidade reduzidos de cada parametro para cada variavel

PROBLEMA INVERSO

O modelo estudado é definido por oito parametros, 8=[y,,_, Yeast, K, K, K,
Y. Y, eY,l. Embora o modelo tenha oito parametros, um subconjunto pode ser
calculado ou obtido usando medidas experimentais das concentragdes iniciais e
finais de levedura, carbono, nitrogénio e fosforo, 6=[Yeasti, Y, Y, e Y,]. Dessa forma,
trataremos apenas o subconjunto de parametros que ndo pode ser determinado
por observacbes diretas como desconhecido para o problema inverso, 6=[y,,_, K,
K, K.l aplicando o método Monte Carlo via Cadeia de Markov no mesmo.

Os algoritmos de Monte Carlo via Cadeia de Markov sdo empregados quando é
invidvel ou muito trabalhoso determinar uma solucao analitica para a distribuicdo de
probabilidade posterior, seja pela dificuldade de calcular a constante de normalizacao,
pela forma da distribuicdo a priori ou a forma que a verossimilhanca interage com
a distribuicdo a priori. As Equacdes 6.a-d representam as distribui¢des posteriores
do sistema.

H(8|Yeast
H(8|C
H(_8|N
n6

EXP] xn | Yeasrexp B:I Hlﬂ' (6.a)

jecn|C

exp|

|0 (0] 6
|oem|N

exp)

0] nl8] o

EXp

PEXP] P

0| ml8] ()

exp

Onde Yeast, , C_ . N, eP, representam o conjunto de observacdes

exp’ Texp! exp
experimentais disponivel e B representa o vetor de parametros jd mencionado.

As distribuicdes a priori representam o conhecimento prévio adquirido acerca dos
parametros do modelo, antes de incorporar os dados experimentais. Nesse trabalho
adotou-se que cada parametro é representado por uma distribuicdo normal, com
média e variancia . A distribuicdo a priori é representada pela Equacéo 7.
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A funcao de verossimilhanca simboliza a probabilidade de observar os dados
experimentais dado um vetor de parametros especifico. Neste trabalho assume-se
que as medidas sdo independentes e que a verossimilhanca segue uma distribuicdo
gaussiana para os dados experimentais. As Equagdes 8.a, 8.b, 8.c e 8.d representam
as verossimilhancas do sistema.

i\ T Qo
I:Yeﬂsrexp -Yeast,,,|0|| (Yeast,,, - Yeast ;. (6]

Yeast,, 9 exp|--
Pl ’ N 20> (82)
{ZHGTJ
[ 6]_ {C 5|m|8|:| ( 51m|8| °
p|Cexp = . exp| - 20’ ;é
l2ma?] 2 T (8b) £
T/ g
N ol Ny N0 (N - Ny 6]
PN i) e P\ 9 :
PETAN 207
2mor) :
|P HI- [PE-‘CP-PSITU'Bl) (P Pstmle. %
p, exp e EXP - 2 g
l2no?f T o T
\ T °
H
s

OndeYeast.,C_ N__eP__representam as observacdes experimentais, Yeast

exp’ “exp’ ' “exp exp

C,. N, eP_ representam as curvas simuladas, geradas por MCMC, n___é o nimero
de observac;oes e é avariancia associada a incerteza da medida.

sim’

A implementacdo do método MCMC foi feita através do uso do algoritmo de
Metropolis-Hastings (Hastings, 1970; Metropolis et al., 1953). O algoritmo usa critério
de aceitacdo-rejeicao, que segue os seguintes passos (Davila et al., 2023a; Davila et al.,
2023b; Nunesetal., 2021; Oliveira et al., 2020; Sousa et al., 2025; Toffoliet al., 2023):
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O nUmero de estados da cadeia de Markov (n) é selecionado, indicando o
numero de simulagdes;

O contador de iteracdes é iniciado (i=0) e um valor inicial 8° é selecionado;

Um valor candidato 8" é gerado a partir da distribuicdo p [9"9“)], obtido
a partir da Equacao 9, mostrada a seguir;

0"=0"1+we| ©

Onde w é o passo de procura e é uma variavel aleatdria proveniente de uma
distribuicdo normal N(0,1)

4. A probabilidade de aceitagdo a(ﬁm‘ﬂm::l do valor candidato € obtida

usando a equacao de Hastings, representada pela Equacdo 10;

illT[:Bm|ysim:| p{af 6.]
H[Hi yslmJ p(ﬂ*‘ﬂl]

(670" |=min|1, (10)

Ondem [8.|ys.m} ¢é a distribuicao de probabilidade a posteriori

3.

Uma amostra auxiliar aleatdria é gerada a partir de uma distribuicao
uniforme u~U(0,1).

W

0]

li+1)

" (i)
=P .Caso uzﬂ’(_ﬁ '

il = , i
Se usa’(ﬂ“’lﬁ | 0 novo valor ¢ aceito e P
o valor é rejeitado e pli*1) = pi.

]

O contador é acrescido de i até i+1, e retorna ao passo 3.

A definicdo dos parametros a serem estimados depende dos resultados obtidos
na analise de sensibilidade, onde serdo estimados apenas os parametros que possuem
magnitude para influenciar o modelo e parametros que ndo sejam linearmente
dependentes, evitando um problema mal posto.

METRICA DE COMPARACAO DE MEDIDA
SIMULADA E EXPERIMENTAL

O coeficiente de determinacdo, também conhecido como R? é utilizado para
avaliar a qualidade do ajuste entre os dados experimentais e as curvas simuladas
pelo modelo. E das métricas mais utilizadas na andlise de desempenho de modelos

Modelagem Cinética e Estimacdo de Parametros na Remocao de Poluentes por Crescimento Microbiano
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aplicados a dados discretos. Essa métrica expressa o quanto da variabilidade observada
é explicada pelo modelo.

O célculo de R? depende inicialmente da determinacdo da soma total dos
quadrados (SQy,,,;) € da soma dos quadrados dos residuos (SQ pesi4u0s). definidas
pelas Equacdes (11) e (12). A primeira quantifica a variabilidade total dos dados
experimentais em torno de sua média, enquanto a segunda representa a variabilidade
nao explicada pelo modelo, isto é, o erro entre valores medidos e valores simulados.
(Gujarati, 2000; Mann, 2021; Montgomery; Peck; G Geoffrey Vining, 2013)

n

SQ o= Z [J"i'?]zi (11)

i=1

-~ '|2

SQResiduas= Z [yi_yill (12)
i=1

Onde Yy, € o valor observado, experimental; Y; € o valor simulado, previsto; ¥
é a média das observagdes e n é o nimero de observagdes.

A partir dessas quantidades, o coeficiente de determinacdo é obtido pela
Equacao (13), cuja formulacado varia entre 0 e 1. Valores préximos de 1 indicam forte
concordancia entre modelo e dados experimentais, enquanto valores mais baixos
sinalizam inconsisténcias ou limitacdes na representacdo do sistema (Gujarati, 2000;
Mann, 2021; Montgomery; Peck; G Geoffrey Vining, 2013).

R2 — 1 _ SQResr'duos (13)

Total

As métricas de ajuste foram calculadas para cada uma das varidveis do modelo
(levedura, carbono, nitrogénio e fésforo), permitindo identificar quais dinamicas
foram mais adequadamente representadas pelo modelo ajustado.

Modelagem Cinética e Estimacdo de Parametros na Remocao de Poluentes por Crescimento Microbiano
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RESULTADOS

PROBLEMA DIRETO

A solucdo do problema direto permitiu simular a dindmica da levedura e dos
substratos durante o processo experimental. As Figuras 1.a, 1.b e 1.capresentam as
curvas obtidas a partir do conjunto de parametros iniciais fornecido por Mohiuddin
et al. (2022) reproduzido na Tabela 1 e a verificacdo da solucdo do modelo.
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Figura 1.a— Concentracdo de Levedura

Concentragao de Carbono
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Figura 1.b — Concentracdo de Carbono
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Concentragio de Nitrogénio
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Figura 1.c - Concentracdo de Nitrogénio

A comparacdo dos resultados é referente a etapa de verificacdo do modelo, onde
é comparada a solucao deste trabalho com a solucdo da referéncia. Dessa forma,
as curvas dos dois trabalhos tiveram dinamicas similares. Em ambas as resolucoes,
o regime permanente foi atingido por volta das 15 horas, quando a concentracdo
de levedura e dos substratos permaneceu aproximadamente constante.

A concentragdo de levedura apresenta crescimento ao longo do tempo, conforme
esperado para sistemas em que ha oferta de nutrientes essenciais. O aumento da
biomassa esta associado ao consumo progressivo do carbono, nitrogénio e fésforo,
observado pela reducdo continua das concentracdes desses substratos ao longo
da simulagéo. Esse comportamento é compativel com a fisiologia microbiana e
indica que o modelo foi capaz de reproduzir adequadamente a tendéncia geral
dos dados experimentais (Mcneil; Harvey, 2008, P. 103-108; Mohiuddin et al., 2024;
Zhang; Elser, 2017).

Adindmica nas simulacdes diretas forneceu uma base importante para as etapas
subsequentes, permitindo avaliar a sensibilidade do modelo e justificar a selecdo
dos parémetros a serem ajustados pela abordagem bayesiana. Além disso, essas
simulacdes foram essenciais para definir bons valores iniciais para o algoritmo MCMC.

ANALISE DE SENSIBILIDADE

AsFiguras 2.3, 2.b, 2.ce 2.d apresentam os coeficientes de sensibilidade reduzidos
calculados para cada parametro do modelo. Esses coeficientes permitem avaliar a
influéncia relativa de cada parametro sobre as varidveis de estado, considerando
adequadamente suas diferentes escalas.

Modelagem Cinética e Estimacdo de Parametros na Remocao de Poluentes por Crescimento Microbiano

o
=
>
=
[
<
¥}

13




Coeficientes de Sensibilidade (CS) - Levedura

=)
on
£
<
5
=
[}
E, - -[Levedura]
-20 _g: Hinax
2"
-40 —CS- KN
—CS-K
-60 1 1 1 P
5 10 15 20 25 30
Tempo [h]
Figura 2.a — Coeficiente de Sensibilidade (Levedura)
0 Coeficientes de Sensibilidade (CS) - Carbono g
S 3
N ]
- .[C] 2
400 s —CS-p 3
N max £
“ N —CS-K e
N ]
=) N —CS-K 8
g 0 \\\ —CS- KP g
£
§ 10 AN 3
8 RS &
>~ (7]
’
o
10 £
©
-20 g
5 10 15 20 25 30 2
Tempo [h] §
5
&
Figura 2.b — Coeficiente de Sensibilidade (Carbono) §
g
£
Coeficientes de Sensibilidade (CS) - Nitrogénio §
(9]
£
15
g
]
=) 3
= s
=
=}
g
<«
& -
E 5 - -[N] %)
Z —CS- Prnax =
—CS- KC <
-10 _CS- <
—CS- ](P
-15 :
0 5 10 15 20 25 30

Tempo [h] 14

Figura 2.c - Coeficiente de Sensibilidade (Nitrogénio)



Coeficientes de Sensibilidade (CS) - Fésforo

=)
on
£
2
2
2 -5 - [P
_CS - #max
—CS-K,,
-10 :
—CS-Ky
—CS-K,
15
5 10 15 20 25 30

Tempo [h]
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Os resultados indicam que apenas os parametros e K_apresentam
sensibilidade expressiva sobre as curvas de biomassa e de carbono, especialmente
nos primeiros instantes da simulacdo, quando a taxa de crescimento celular é mais
pronunciada. Tal dindmica € coerente com a formulacdo do modelo, uma vez que
ambos os parametros estdo diretamente associados a cinética de crescimento
microbiano (Arnaldos et al., 2015; Monod, 1949).

Entretanto, observa-se que as curvas de sensibilidade reduzida desses dois
parametros apresentam formas muito semelhantes ao longo do tempo. Essa
similaridade indica a existéncia de dependéncia linear entre eles: mudancas
simultaneas em p,, e K. podem produzir efeitos quase indistinguiveis nas saidas
do modelo. Arnaldos et al. (2015) reforcam que a estrutura matematica da funcdo de
Monod impede a diferenciagao clara entre a afinidade pelo substrato e a velocidade
maxima de crescimento a partir de dados experimentais convencionais.

A presenca dessa dependéncia compromete a estimativa simultanea dos dois
parametros, pois diferentes combina¢des podem gerar respostas praticamente
equivalentes, tornando o problema inverso mal condicionado.

Os demais parametros exibem coeficientes de sensibilidade reduzidos proximos
de zero para todas as varidveis analisadas, o que implica influéncia limitada sobre
a dinamica do sistema nas condi¢des estudadas. Dessa forma, estimativas nesses
parametros ndo resultariam em melhorias significativas na capacidade preditiva do
modelo. (Helcio R.B. Orlande et al., 2011; Helcio R.B. Orlande; Necati Ozisik, 2021;
Moura et al., 2021)
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Com base nesses resultados, conclui-se que somente i, apresenta sensibilidade
suficiente e independéncia estrutural para ser estimado de forma confidvel. Esse
resultado orientou a escolha desse parametro como foco da etapa de estimacao
bayesiana apresentada na Secdo 3.3.

PROBLEMAS INVERSOS

A Figura 3 apresenta o traceplot da cadeia gerada para o parametro y,,. ao
longo das 10.000 iteragdes do algoritmo Metropolis—Hastings. Observa-se que, apds
aproximadamente 600 iteracdes, a cadeia atinge uma regido de comportamento
estacionario, caracterizada pela flutuacdo em torno de um nivel médio estdvel. Esse
comportamento indica que o periodo de aquecimento (burn-in) foi adequadamente
removido e que a cadeia passou a amostrar a distribuicdo posterior do parametro.

Cadeia Gerada
0.6 1
Y A o R S e Y P g s ey S, e o o
=
o 0.55 .
=) Valor de Referéncia
<
5 Valor Em Cada Iteragdo
-
=}
k=]
5
= 05
>
045" J

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Numero de Estados [n]

Figura 3 - Traceplot da Cadeia de p,,_,

A convergéncia observada ndo decorre de propriedade inerente a cadeia de
Markov, mas do fato de que, apds numero suficiente de iteracdes, a distribuicdo
dos estados converge para a distribuicdo posterior. Essa estabilidade temporal é um
indicativo de que as amostras restantes representam apropriadamente a distribuicao
deinteresse (Helcio R.B. Orlande et al., 2011; Helcio R.B. Orlande; Necati Ozisik, 2021;
James Vere Beck; Arnold, 1977; Moura et al., 2021).

AFigura 4 apresenta o histograma das amostras da distribuicdo de probabilidade
a posteriori, juntamente com a estimativa da densidade posterior. A distribuicao
obtida apresenta forma unimodal e concentracdo elevada em torno de valores
préximos ao reportado por Mohiuddin et al. (2022).
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Figura 4 — Histograma da distribuicao a posteriori de p,,_,

A média de obtida para o parametro, dentro de um intervalo de credibilidade
de 99%, foide: p,, =0,5879 h™.

Ointervalo de credibilidade de 99% foi obtido diretamente a partir dos quantis
da distribuicdo posterior, evitando suposicdes adicionais de normalidade. Esse
intervalo fornece uma estimativa da incerteza associada ao parametro e permite
avaliar a confiabilidade da inferéncia.

As Figuras 5.a-d apresentam as comparacoes entre os dados experimentais, que
estdo legendados como “Medida” nos graficos, e as curvas simuladas utilizando o
valor estimado. Observa-se melhora no ajuste para a varidvel carbono, especialmente
na fase de consumo mais acentuado. Para a biomassa, a curva ajustada aproxima-se
mais dos pontos experimentais nas fases intermediarias da simulacdo. Apesar disso,
alguns desvios permanecem, indicando que ajustes adicionais — envolvendo outros
parametros ou modelos alternativos — poderiam ser investigados em estudos futuros.
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A Tabela 3 apresenta os valores de R? calculados para cada variavel do modelo
utilizando o valor estimado de y,, .. De modo geral, os resultados confirmam o
desempenho satisfatério do modelo, embora com variagdes entre as diferentes
varidveis analisadas.

Dinamica R?
Levedura 0,9080
Carbono 0,9446
Nitrogénio 0,8513
Fosforo 0,4420

Tabela 3 - Coeficientes de determinacéo (R?)
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A estimacdo bayesiana de parametros, conduzida via algoritmo Metropolis-
Hastings, resultou em um valor médio para a velocidade maxima de crescimento
de p,,.. = 0,5879™. A aplicacdo deste parametro ao modelo cinético permitiu a
simulacdo das dindmicas de consumo de substratos e crescimento da biomassa,
cujos desempenhos foram avaliados por meio do coeficiente de determinacéo (R?).

Os resultados indicaram um ajuste satisfatorio para a biomassa da levedura (R?
=0,9080) e excelente para o carbono organico (R? = 0,9446). A literatura aponta
que o modelo de Monod, base desta modelagem, apresenta alta robustez para
descrever a remocao de substratos carbondceos, uma vez que a relagdo entre o
consumo de energia e o incremento de biomassa é mais direta nesses sistemas
(Muloiwa; Nyende-Byakika; Dinka, 2020).

Contudo, observou-se uma reducdo na precisdo do ajuste para o nitrogénio
(R?=0,8513) e, de forma mais acentuada, para o fésforo (R? = 0,4420). No caso
do nitrogénio, a dispersdo dos dados em relacdo ao modelo pode ser atribuida a
complexidade metabdlica. Diferente de processos puramente assimilativos, leveduras
como a Candida tropicalis possuem vias para nitrificacdo e desnitrificacdo simultaneas,
0 que introduz mecanismos de remoc¢ao nao capturados integralmente por uma
cinética de crescimento simples (He et al., 2021).

O baixo indice de ajuste para o fésforo pode estar relacionado a acimulo
ou inadequacdo do modelo. Conforme discutido por Dong et al. (2022), sistemas
baseados em leveduras frequentemente apresentam o fendmeno de “consumo
de luxo” (luxury uptake), onde o fésforo é acumulado intracelularmente na forma
de polifosfato de maneira desacoplada da taxa de crescimento instantanea. Essa
dindmica sugere que a utilizacdo de modelos de cota celular, como o de Droop,
poderia ser mais adequada para descrever a remocao de nutrientes especificos que
sofrem estocagem intracelular (Lee; Jalalizadeh; Zhang, 2015).

CONCLUSOES

O presente estudo analisou a dindmica de crescimento microbiano e o consumo
de substratos em um sistema de remocao de poluentes por meio do modelo cinético
proposto por Mohiuddin et al. (2022), empregando técnicas de modelagem
matematica e inferéncia bayesiana para a estimacao de parametros.

A solucdo do problema direto permitiu reproduzir de forma coerente o
comportamento qualitativo das varidveis experimentais, evidenciando crescimento
da biomassa e consumo progressivo de carbono, nitrogénio e fésforo. No entanto,
discrepancias quantitativas entre as curvas simuladas e os dados experimentais
indicaram a necessidade de ajuste paramétrico para aprimorar a capacidade preditiva
do modelo.
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Aanadlise de sensibilidade demonstrou que o parametro p,, apresenta a maior
influéncia sobre a dinamica do sistema, especialmente sobre a biomassa e o carbono,
enquanto os demais parametros exibiram sensibilidade reduzida nas condi¢des
estudadas. Além disso, a dependéncia linear observada entre ,,_ e K_inviabilizou
a estimagdo simultanea desses parametros, justificando a escolha de ,, como
Unico parametro a ser estimado no problema inverso.

A estimagdo bayesiana por meio do método de Monte Carlo via Cadeias de
Markov, utilizando o algoritmo Metropolis—-Hastings, resultou em um valor estimado
dey,, =0,5879 h", obtido a partir da média da distribuicdo posterior, comintervalo
de credibilidade de 99% determinado diretamente a partir dos quantis da posterior.
A analise do traceplot indicou comportamento estaciondrio da cadeia apds o
periodo de aquecimento, evidenciando a convergéncia adequada do algoritmo e
a confiabilidade das amostras geradas.

A utilizacdo do valor estimado de y,,_ proporcionou melhora no ajuste das
curvas simuladas em relacdo aos dados experimentais, especialmente para a
biomassa e o carbono. Os valores do coeficiente de determinacdo confirmaram
esse comportamento, resultando em R?=0,9080 para a levedura e R?= 0,9446
para o carbono. Para o nitrogénio e fosforo os valores de R? foram de 0,8513 e
0,4420, respectivamente, refletindo um menor ajuste dessas dindmicas aos dados
experimentais.

Os resultados obtidos demonstram que a abordagem bayesiana adotada foi
eficaz na estimacao de parametros cinéticos relevantes, permitindo ndo apenas
a obtencdo de um valor consistente com os dados experimentais, mas também a
quantificacdo explicita da incerteza associada a estimativa. Apesar das limitacdes
impostas pela dependéncia linear entre parametros, o estudo evidencia o potencial
do uso de métodos estocasticos, como o MCMC, na andlise e interpretacdo de
sistemas bioldgicos complexos.
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