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RESUMO:Este capítulo apresenta a modelagem matemática e a estimação bayesiana 
de parâmetros cinéticos aplicadas a um processo de remoção de poluentes por 
crescimento microbiano, com base no modelo proposto por Mohiuddin et al. (2022). O 
sistema foi descrito por equações diferenciais ordinárias que representam a dinâmica 
da biomassa microbiana e o consumo dos substratos carbono, nitrogênio e fósforo. 
O problema direto foi resolvido numericamente no MATLAB®, utilizando o solver 
ode15s, permitindo reproduzir de forma coerente o comportamento qualitativo 
das variáveis experimentais. A análise de sensibilidade indicou que o parâmetro 
associado à velocidade máxima de crescimento microbiano (µMax) e a constante 
de meia saturação do carbono (KC) exercem maior influência sobre as dinâmicas, 
enquanto os demais parâmetros apresentaram sensibilidade reduzida nas condições 
analisadas. Observou-se ainda dependência linear entre µMax e KC, inviabilizando a 
estimação simultânea desses parâmetros. Com base nesses resultados, realizou-se 
a estimação bayesiana de µMax por meio do método de Monte Carlo via Cadeias 
de Markov, utilizando o algoritmo Metropolis–Hastings, resultando em um valor 
estimado de µMax = 0,5879 h-1. A utilização do parâmetro estimado trouxe bons 
ajustes para a biomassa e o carbono, com coeficientes de determinação de R2 = 
0,9080 e R2 = 0,9446, respectivamente. Já para o nitrogênio e fósforo os ajustes 
não foram tão adequados, com coeficientes de determinação (R2) de 0,8513 para 
o nitrogênio e 0,4420 para o fósforo. Os resultados demonstram a eficácia da 
abordagem bayesiana na estimação de parâmetros cinéticos e na quantificação 
das incertezas associadas ao modelo.

PALAVRAS-CHAVE: modelagem matemática; estimação bayesiana; Monte Carlo via 
Cadeias de Markov; análise de sensibilidade; remoção de poluentes.

Kinetic Modeling and Parameter Estimation in 
Pollutant Removal via Microbial Growth

ABSTRACT: This chapter presents the mathematical modeling and Bayesian parameter 
estimation applied to a pollutant removal process based on microbial growth, using 
the model proposed by Mohiuddin et al. (2022). The system is described by a set 
of ordinary differential equations representing the dynamics of microbial biomass 
and the consumption of carbon, nitrogen, and phosphorus substrates. The forward 
problem was numerically solved in MATLAB® using the ode15s solver, allowing 
a coherent qualitative reproduction of the experimental behavior of the system 
variables. Sensitivity analysis indicated that the parameter associated with the 
maximum microbial growth rate (µMax) and the carbon half-saturation constant (KC) 
exerts the greatest influence on biomass growth and carbon consumption, while the 
remaining parameters exhibited reduced sensitivity under the analyzed conditions. 
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A linear dependence between µMax and KC preventing their simultaneous estimation. 
Based on these results, Bayesian estimation of µMax was performed using the Markov 
Chain Monte Carlo method with the Metropolis–Hastings algorithm, resulting in 
an estimated value of µMax = 0,5879 h-1. The use of the estimated parameter led to 
an good agreement between experimental data and simulated curves, particularly 
for biomass and carbon, with coefficients of determination of R2 = 0,9080 and R2 

= 0,9446, respectively. For nitrogen and phosphorus, the obtained R2 values were 
0,8513 and 0,4420, respectively, reflecting poorer adjustment for those dynamics. 
The results demonstrate the effectiveness of the Bayesian approach for estimating 
relevant kinetic parameters and for quantifying the uncertainties associated with 
the proposed model. 

KEYWORDS: mathematical modeling; Bayesian estimation; Markov Chain Monte 
Carlo; sensitivity analysis; pollutant removal.

INTRODUÇÃO
A preocupação com os recursos hídricos tem sido cada vez mais enfatizada ao 

longo do tempo devido à sua ampla utilização nos setores industrial, agropecuário e 
doméstico. Além do uso direto, os corpos d’água constituem ambientes que abrigam 
diversas comunidades biológicas e desempenham papel essencial na manutenção 
da vida na Terra. (LOUCKS; JIA, 2011)

Segundo o relatório Water for Prosperity and Peace (UNESCO, 2024), a agricultura 
é responsável por aproximadamente 70% das retiradas globais de água doce, seguida 
pela indústria (20%) e pelo uso doméstico (12%). Além disso, desde a década de 
1980, a demanda mundial por água doce cresce cerca de 1% ao ano, tendência 
intensificada pela urbanização e pelo aumento populacional.

Nesse sentido, a poluição da água surge como resultado da industrialização, 
das práticas agrícolas e da insuficiência de tratamentos adequados de efluentes. 
Destilarias, curtumes, indústrias têxteis, de celulose, alimentícias e metalúrgicas 
liberam substâncias orgânicas e inorgânicas, metais, solventes e agentes tóxicos 
que, quando descartados sem tratamento, intensificam a contaminação dos corpos 
hídricos (Chaudhry; Malik, 2017; Schwarzenbach et al., 2010).

Para mitigar esses impactos, diversas abordagens têm sido estudadas, entre elas 
processos físicos, químicos e biológicos de tratamento. A biorremediação destaca-
se como alternativa promissora, utilizando microrganismos capazes de degradar 
compostos contaminantes por meio de sua atividade metabólica (Madigan; Brock; 
Martinko, 2016). Bactérias, microalgas e fungos são amplamente aplicados nesses 
processos (Harms; Schlosser; Wick, 2011; Khalid et al., 2021)



4

CA
PÍ

TU
LO

 1
M

od
el

ag
em

 C
in

ét
ic

a 
e 

Es
tim

aç
ão

 d
e 

Pa
râ

m
et

ro
s n

a 
Re

m
oç

ão
 d

e 
Po

lu
en

te
s p

or
 C

re
sc

im
en

to
 M

ic
ro

bi
an

o

A utilização de modelos matemáticos permite prever e quantificar a dinâmica 
de consumo de substrato, crescimento microbiano e formação de produtos, além de 
possibilitar a estimativa de parâmetros essenciais para a compreensão e otimização 
do processo. Modelos podem possuir parâmetros difíceis ou impossíveis de estimar 
utilizando observações diretas ou medidas experimentais. Devido a essa dificuldade 
de obter os valores dos parâmetros, utilizou-se a técnica Bayesiana de Monte Carlo 
via Cadeia de Markov para inferir os parâmetros do modelo. (Helcio R.B. Orlande et 
al., 2011; Helcio R.B. Orlande; Necati Özisik, 2021; Saltelli et al., 2020)

Métodos estocásticos, como o algoritmo de Monte Carlo via Cadeias de Markov 
(MCMC), permitem inferir parâmetros de difícil determinação analítica (Helcio R.B. 
Orlande et al., 2011; Helcio R.B. Orlande; Necati Özisik, 2021). Este trabalho tem como 
objetivo simular e estimar os parâmetros relevantes do modelo cinético proposto 
por Mohiuddin et al. (2022), avaliando seu ajuste aos dados experimentais.

METODOLOGIA
O presente trabalho tem como objetivo estimar os parâmetros presentes no 

modelo cinético proposto por Mohiuddin et al. (2022), utilizando o método de Monte 
Carlo via Cadeia de Markov, mais especificamente o algoritmo Metropolis-Hastings. 

A primeira etapa é resolver o problema direto, calcular os resultados das equações 
diferenciais, dadas as condições iniciais. O problema direto foi resolvido utilizando 
o solver ode15s presente no software MATLAB.

Posteriormente, a análise de sensibilidade é resolvida. A análise de sensibilidade 
é a etapa que analisa quais parâmetros exercem maior influência sobre o modelo 
e quais são linearmente dependentes.

A estimativa de parâmetros é feita após a análise de sensibilidade, utilizando o 
método de Monte Carlo via Cadeia de Markov, resolvido via algoritmo de Metropolis-
Hastings. A estimativa vai permitir o cálculo de valores de parâmetros presentes no 
modelo que seriam de difícil obtenção experimental ou cálculo analítico.

PROBLEMA DIRETO
A modelagem do sistema de remoção de poluentes foi realizada com base 

no modelo cinético proposto por Mohiuddin et al. (2022), composto por quatro 
equações diferenciais ordinárias que descrevem a dinâmica da levedura e dos 
substratos carbono, nitrogênio e fósforo. O conjunto completo dessas equações é 
apresentado nas Equações 1.a-d.



5

CA
PÍ

TU
LO

 1
M

od
el

ag
em

 C
in

ét
ic

a 
e 

Es
tim

aç
ão

 d
e 

Pa
râ

m
et

ro
s n

a 
Re

m
oç

ão
 d

e 
Po

lu
en

te
s p

or
 C

re
sc

im
en

to
 M

ic
ro

bi
an

o

Os parâmetros contidos no sistema são θ = [µMax, Yeasti, KC, KN, KP, YC, YN e YP]. 
Onde µMax representa a velocidade máxima de crescimento celular; Yeasti representa 
a concentração inicial de levedura; KC, KN, e KP representam os constantes de meia 
saturação dos substratos: carbono, nitrogênio e fósforo, respectivamente; e YC, YN e YP 
representam os coeficientes de rendimento do consumo de cada substrato: carbono, 
nitrogênio e fósforo. Ou seja, o quanto de substrato é consumido pelas células.  

A solução preliminar do problema direto utilizou-se os valores de parâmetros 
disponibilizados no estudo original, apresentados na Tabela 1. Esses valores também 
foram adotados como estimativas iniciais para a etapa posterior de estimação de 
parâmetros, uma vez que fornecem um ponto de partida fisicamente consistente 
para o método estocástico empregado.

Parâmetros Valor Unidade de medida
µMax 0.59 1/h

Yeasti 10 mg/L
KC 33,8 mg/L
KN 1,0021 mg/L

KP 1,0061 mg/L
YC 0,897 mg[C]/mg[Levedura]
YN 0,086 mg[N]/mg[Levedura]
YP 0,013 mg[P]/mg[Levedura]

Tabela 1 – Tabela de Parâmetros
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Os coeficientes de rendimento podem ser calculados utilizando as medidas finais 
e iniciais dos substratos e concentração celular, conforme descrito na Equação (2).

                                           (2)

O sistema de equações diferenciais ordinárias foi resolvido numericamente 
no software MATLAB®, utilizando-se o solver ode15s, apropriado para sistemas 
considerados rígidos (stiff). A escolha desse método deve-se à sua estabilidade 
numérica em cenários onde diferentes variáveis apresentam escalas de variação 
distintas, características de sistemas stiff. (Shampine; Reichelt, 1997)

ANÁLISE DE SENSIBILIDADE
A análise de sensibilidade foi conduzida com o objetivo de identificar quais 

parâmetros exercem maior influência sobre as variáveis de estado do modelo, bem 
como verificar a existência de possíveis dependências lineares entre eles. Essa etapa 
é fundamental para determinar quais parâmetros apresentam impacto significativo 
sobre a dinâmica do sistema e, portanto, são candidatos adequados à estimação 
no problema inverso. 

A sensibilidade de uma variável de estado Yi em relação a um parâmetro θj 
é expressa pelo coeficiente de sensibilidade apresentado na Equação (3). Esse 
coeficiente permite avaliar como pequenas perturbações no valor de um parâmetro 
afetam a resposta do modelo. Coeficientes de baixa magnitude indicam que o 
parâmetro exerce pouca influência sobre a variável analisada, enquanto valores 
elevados sugerem forte impacto sobre a dinâmica do sistema. (Helcio R.B. Orlande 
et al., 2011; Helcio R.B. Orlande; Necati Özisik, 2021; James Vere Beck; Arnold, 1977)

                                   (3)

Além disso, a análise dos coeficientes de sensibilidade ao longo do tempo 
auxilia na identificação de dependência linear entre parâmetros. A presença desse 
fenômeno compromete a estimação simultânea, pois diferentes combinações 
paramétricas passam a produzir respostas semelhantes, tornando o problema 
inverso mal condicionado.

Para mitigar os efeitos de variações de escala entre parâmetros, utilizou-se o 
coeficiente de sensibilidade reduzido, apresentado na Equação (4). Esse coeficiente 
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é obtido ao multiplicar Jij pelo próprio parâmetro θj, permitindo comparações mais 
adequadas entre parâmetros com ordens de grandeza distintas. (Helcio R.B. Orlande 
et al., 2011; Helcio R.B. Orlande; Necati Özisik, 2021; James Vere Beck; Arnold, 1977)

                                     (4)

Os coeficientes de sensibilidade foram calculados numericamente por meio 
do método de diferenças finitas centrais, conforme a Equação (5). Esse método foi 
escolhido por apresentar maior precisão em relação à diferença para frente, uma 
vez que utiliza perturbações simétricas em torno do ponto de avaliação. (Helcio 
R.B. Orlande et al., 2011; Helcio R.B. Orlande; Necati Özisik, 2021; James Vere Beck; 
Arnold, 1977)

 (5)

A partir desses cálculos, obtiveram-se os coeficientes de sensibilidade reduzidos 
apresentados na Tabela 2, os quais serviram de base para selecionar os parâmetros 
estimados na etapa de problema inverso.

Xij Yeast C N P

µMax

KC

KN
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KP

Onde Xij é o coeficiente de sensibilidade reduzido

Tabela 2 – Coeficientes de sensibilidade reduzidos de cada parâmetro para cada variável

PROBLEMA INVERSO
O modelo estudado é definido por oito parâmetros, θ = [µMax, Yeasti, KC, KN, KP, 

YC, YN e YP]. Embora o modelo tenha oito parâmetros, um subconjunto pode ser 
calculado ou obtido usando medidas experimentais das concentrações iniciais e 
finais de levedura, carbono, nitrogênio e fósforo, θ = [Yeasti, YC, YN e YP]. Dessa forma, 
trataremos apenas o subconjunto de parâmetros que não pode ser determinado 
por observações diretas como desconhecido para o problema inverso, θ = [µMax, KC, 
KN, KP], aplicando o método Monte Carlo via Cadeia de Markov no mesmo. 

Os algoritmos de Monte Carlo via Cadeia de Markov são empregados quando é 
inviável ou muito trabalhoso determinar uma solução analítica para a distribuição de 
probabilidade posterior, seja pela dificuldade de calcular a constante de normalização, 
pela forma da distribuição a priori ou a forma que a verossimilhança interage com 
a distribuição a priori. As Equações 6.a-d representam as distribuições posteriores 
do sistema.

 (6.a)

 (6.b)

 (6.c)

 (6.d)

Onde Yeastexp, Cexp, Nexp e Pexp representam o conjunto de observações 
experimentais disponível e θ representa o vetor de parâmetros já mencionado. 

As distribuições a priori representam o conhecimento prévio adquirido acerca dos 
parâmetros do modelo, antes de incorporar os dados experimentais. Nesse trabalho 
adotou-se que cada parâmetro é representado por uma distribuição normal, com 
média  e variância . A distribuição a priori é representada pela Equação 7.
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  (7)

A função de verossimilhança simboliza a probabilidade de observar os dados 
experimentais dado um vetor de parâmetros específico. Neste trabalho assume-se 
que as medidas são independentes e que a verossimilhança segue uma distribuição 
gaussiana para os dados experimentais. As Equações 8.a, 8.b, 8.c e 8.d representam 
as verossimilhanças do sistema.

      (8 a)

 
(8 b)

   

(8 c)

   

(8 d)

Onde Yeastexp, Cexp, Nexp e Pexp representam as observações experimentais, Yeastsim, 
Csim, Nsim e Psim representam as curvas simuladas, geradas por MCMC, nobs é o número 
de observações e  é a variância associada à incerteza da medida.

A implementação do método MCMC foi feita através do uso do algoritmo de 
Metropolis-Hastings (Hastings, 1970; Metropolis et al., 1953). O algoritmo usa critério 
de aceitação-rejeição, que segue os seguintes passos (Davila et al., 2023a; Davila et al., 
2023b; Nunes et al., 2021; Oliveira et al., 2020; Sousa et al., 2025; Toffoli et al., 2023):
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1.	 O número de estados da cadeia de Markov (n) é selecionado, indicando o 
número de simulações;

2.	 O contador de iterações é iniciado (i=0) e um valor inicial θ0 é selecionado;

3.	 Um valor candidato θ* é gerado a partir da distribuição , obtido 
a partir da Equação 9, mostrada a seguir;

     (9)

Onde w é o passo de procura e  é uma variável aleatória proveniente de uma 
distribuição normal N(0,1)

4.	 A probabilidade de aceitação  do valor candidato é obtida 
usando a equação de Hastings, representada pela Equação 10;

    

(10)

Onde  é a distribuição de probabilidade a posteriori

1.	 Uma amostra auxiliar aleatória é gerada a partir de uma distribuição 
uniforme u~U(0,1).

2.	 Se u≤  , o novo valor é aceito e . Caso u≥ , 
o valor é rejeitado e .

3.	 O contador é acrescido de i até i+1, e retorna ao passo 3.

A definição dos parâmetros a serem estimados depende dos resultados obtidos 
na análise de sensibilidade, onde serão estimados apenas os parâmetros que possuem 
magnitude para influenciar o modelo e parâmetros que não sejam linearmente 
dependentes, evitando um problema mal posto.

MÉTRICA DE COMPARAÇÃO DE MEDIDA 
SIMULADA E EXPERIMENTAL

O coeficiente de determinação, também conhecido como R2 é utilizado para 
avaliar a qualidade do ajuste entre os dados experimentais e as curvas simuladas 
pelo modelo. É das métricas mais utilizadas na análise de desempenho de modelos 
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aplicados a dados discretos. Essa métrica expressa o quanto da variabilidade observada 
é explicada pelo modelo. 

O cálculo de R2 depende inicialmente da determinação da soma total dos 
quadrados (​ ) e da soma dos quadrados dos resíduos ( ​), definidas 
pelas Equações (11) e (12). A primeira quantifica a variabilidade total dos dados 
experimentais em torno de sua média, enquanto a segunda representa a variabilidade 
não explicada pelo modelo, isto é, o erro entre valores medidos e valores simulados. 
(Gujarati, 2000; Mann, 2021; Montgomery; Peck; G Geoffrey Vining, 2013)

   

(11)

  

(12)

Onde  é o valor observado, experimental;  é o valor simulado, previsto;  
é a média das observações e n é o número de observações.

A partir dessas quantidades, o coeficiente de determinação é obtido pela 
Equação (13), cuja formulação varia entre 0 e 1. Valores próximos de 1 indicam forte 
concordância entre modelo e dados experimentais, enquanto valores mais baixos 
sinalizam inconsistências ou limitações na representação do sistema (Gujarati, 2000; 
Mann, 2021; Montgomery; Peck; G Geoffrey Vining, 2013). 

  

(13)

As métricas de ajuste foram calculadas para cada uma das variáveis do modelo 
(levedura, carbono, nitrogênio e fósforo), permitindo identificar quais dinâmicas 
foram mais adequadamente representadas pelo modelo ajustado.
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RESULTADOS

PROBLEMA DIRETO
A solução do problema direto permitiu simular a dinâmica da levedura e dos 

substratos durante o processo experimental. As Figuras 1.a, 1.b e 1.c apresentam as 
curvas obtidas a partir do conjunto de parâmetros iniciais fornecido por Mohiuddin 
et al. (2022) reproduzido na Tabela 1 e a verificação da solução do modelo.

Figura 1.a – Concentração de Levedura

Figura 1.b – Concentração de Carbono
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Figura 1.c – Concentração de Nitrogênio

A comparação dos resultados é referente a etapa de verificação do modelo, onde 
é comparada a solução deste trabalho com a solução da referência. Dessa forma, 
as curvas dos dois trabalhos tiveram dinâmicas similares. Em ambas as resoluções, 
o regime permanente foi atingido por volta das 15 horas, quando a concentração 
de levedura e dos substratos permaneceu aproximadamente constante.

A concentração de levedura apresenta crescimento ao longo do tempo, conforme 
esperado para sistemas em que há oferta de nutrientes essenciais. O aumento da 
biomassa está associado ao consumo progressivo do carbono, nitrogênio e fósforo, 
observado pela redução contínua das concentrações desses substratos ao longo 
da simulação. Esse comportamento é compatível com a fisiologia microbiana e 
indica que o modelo foi capaz de reproduzir adequadamente a tendência geral 
dos dados experimentais (Mcneil; Harvey, 2008, P. 103–108; Mohiuddin et al., 2024; 
Zhang; Elser, 2017). 

A dinâmica nas simulações diretas forneceu uma base importante para as etapas 
subsequentes, permitindo avaliar a sensibilidade do modelo e justificar a seleção 
dos parâmetros a serem ajustados pela abordagem bayesiana. Além disso, essas 
simulações foram essenciais para definir bons valores iniciais para o algoritmo MCMC.

ANÁLISE DE SENSIBILIDADE
As Figuras 2.a, 2.b, 2.c e 2.d apresentam os coeficientes de sensibilidade reduzidos 

calculados para cada parâmetro do modelo. Esses coeficientes permitem avaliar a 
influência relativa de cada parâmetro sobre as variáveis de estado, considerando 
adequadamente suas diferentes escalas.
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Figura 2.a – Coeficiente de Sensibilidade (Levedura)

Figura 2.b – Coeficiente de Sensibilidade (Carbono)

Figura 2.c – Coeficiente de Sensibilidade (Nitrogênio)
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Figura 2.d – Coeficiente de Sensibilidade (Fósforo)

Os resultados indicam que apenas os parâmetros µMax e KC​ apresentam 
sensibilidade expressiva sobre as curvas de biomassa e de carbono, especialmente 
nos primeiros instantes da simulação, quando a taxa de crescimento celular é mais 
pronunciada. Tal dinâmica é coerente com a formulação do modelo, uma vez que 
ambos os parâmetros estão diretamente associados à cinética de crescimento 
microbiano (Arnaldos et al., 2015; Monod, 1949).

Entretanto, observa-se que as curvas de sensibilidade reduzida desses dois 
parâmetros apresentam formas muito semelhantes ao longo do tempo. Essa 
similaridade indica a existência de dependência linear entre eles: mudanças 
simultâneas em µMax​ e KC podem produzir efeitos quase indistinguíveis nas saídas 
do modelo. Arnaldos et al. (2015) reforçam que a estrutura matemática da função de 
Monod impede a diferenciação clara entre a afinidade pelo substrato e a velocidade 
máxima de crescimento a partir de dados experimentais convencionais. 

A presença dessa dependência compromete a estimativa simultânea dos dois 
parâmetros, pois diferentes combinações podem gerar respostas praticamente 
equivalentes, tornando o problema inverso mal condicionado.

Os demais parâmetros exibem coeficientes de sensibilidade reduzidos próximos 
de zero para todas as variáveis analisadas, o que implica influência limitada sobre 
a dinâmica do sistema nas condições estudadas. Dessa forma, estimativas nesses 
parâmetros não resultariam em melhorias significativas na capacidade preditiva do 
modelo. (Helcio R.B. Orlande et al., 2011; Helcio R.B. Orlande; Necati Özisik, 2021; 
Moura et al., 2021)
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Com base nesses resultados, conclui-se que somente​ µMax apresenta sensibilidade 
suficiente e independência estrutural para ser estimado de forma confiável. Esse 
resultado orientou a escolha desse parâmetro como foco da etapa de estimação 
bayesiana apresentada na Seção 3.3.

PROBLEMAS INVERSOS
A Figura 3 apresenta o traceplot da cadeia gerada para o parâmetro µMax​ ao 

longo das 10.000 iterações do algoritmo Metropolis–Hastings. Observa-se que, após 
aproximadamente 600 iterações, a cadeia atinge uma região de comportamento 
estacionário, caracterizada pela flutuação em torno de um nível médio estável. Esse 
comportamento indica que o período de aquecimento (burn-in) foi adequadamente 
removido e que a cadeia passou a amostrar a distribuição posterior do parâmetro.

Figura 3 – Traceplot da Cadeia de µMax

A convergência observada não decorre de propriedade inerente à cadeia de 
Markov, mas do fato de que, após número suficiente de iterações, a distribuição 
dos estados converge para a distribuição posterior. Essa estabilidade temporal é um 
indicativo de que as amostras restantes representam apropriadamente a distribuição 
de interesse (Helcio R.B. Orlande et al., 2011; Helcio R.B. Orlande; Necati Özisik, 2021; 
James Vere Beck; Arnold, 1977; Moura et al., 2021). 

A Figura 4 apresenta o histograma das amostras da distribuição de probabilidade 
a posteriori, juntamente com a estimativa da densidade posterior. A distribuição 
obtida apresenta forma unimodal e concentração elevada em torno de valores 
próximos ao reportado por Mohiuddin et al. (2022).
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Figura 4 – Histograma da distribuição a posteriori de µMax

A média de obtida para o parâmetro, dentro de um intervalo de credibilidade 
de 99%, foi de: µMax = 0,5879 h-1. 

O intervalo de credibilidade de 99% foi obtido diretamente a partir dos quantis 
da distribuição posterior, evitando suposições adicionais de normalidade. Esse 
intervalo fornece uma estimativa da incerteza associada ao parâmetro e permite 
avaliar a confiabilidade da inferência.

As Figuras 5.a-d apresentam as comparações entre os dados experimentais, que 
estão legendados como “Medida” nos gráficos, e as curvas simuladas utilizando o 
valor estimado. Observa-se melhora no ajuste para a variável carbono, especialmente 
na fase de consumo mais acentuado. Para a biomassa, a curva ajustada aproxima-se 
mais dos pontos experimentais nas fases intermediárias da simulação. Apesar disso, 
alguns desvios permanecem, indicando que ajustes adicionais — envolvendo outros 
parâmetros ou modelos alternativos — poderiam ser investigados em estudos futuros.
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Figura 5.a – Estimativa MCMC (Levedura)

Figura 5.b – Estimativa MCMC (Carbono)
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Figura 5.c – Estimativa MCMC (Nitrogênio)

Figura 5.d – Estimativa MCMC (Fósforo)

A Tabela 3 apresenta os valores de R2 calculados para cada variável do modelo 
utilizando o valor estimado de µMax​. De modo geral, os resultados confirmam o 
desempenho satisfatório do modelo, embora com variações entre as diferentes 
variáveis analisadas.

Dinâmica R2

Levedura 0,9080
Carbono 0,9446

Nitrogênio 0,8513
Fósforo 0,4420

Tabela 3 – Coeficientes de determinação (R2)
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A estimação bayesiana de parâmetros, conduzida via algoritmo Metropolis-
Hastings, resultou em um valor médio para a velocidade máxima de crescimento 
de µMax = 0,5879-h. A aplicação deste parâmetro ao modelo cinético permitiu a 
simulação das dinâmicas de consumo de substratos e crescimento da biomassa, 
cujos desempenhos foram avaliados por meio do coeficiente de determinação (R2).

Os resultados indicaram um ajuste satisfatório para a biomassa da levedura (R2 
= 0,9080) e excelente para o carbono orgânico (R2 = 0,9446). A literatura aponta 
que o modelo de Monod, base desta modelagem, apresenta alta robustez para 
descrever a remoção de substratos carbonáceos, uma vez que a relação entre o 
consumo de energia e o incremento de biomassa é mais direta nesses sistemas 
(Muloiwa; Nyende-Byakika; Dinka, 2020).

Contudo, observou-se uma redução na precisão do ajuste para o nitrogênio 
(R2 = 0,8513) e, de forma mais acentuada, para o fósforo (R2 = 0,4420). No caso 
do nitrogênio, a dispersão dos dados em relação ao modelo pode ser atribuída à 
complexidade metabólica. Diferente de processos puramente assimilativos, leveduras 
como a Candida tropicalis possuem vias para nitrificação e desnitrificação simultâneas, 
o que introduz mecanismos de remoção não capturados integralmente por uma 
cinética de crescimento simples (He et al., 2021).

O baixo índice de ajuste para o fósforo pode estar relacionado a acúmulo 
ou inadequação do modelo. Conforme discutido por Dong et al. (2022), sistemas 
baseados em leveduras frequentemente apresentam o fenômeno de “consumo 
de luxo” (luxury uptake), onde o fósforo é acumulado intracelularmente na forma 
de polifosfato de maneira desacoplada da taxa de crescimento instantânea. Essa 
dinâmica sugere que a utilização de modelos de cota celular, como o de Droop, 
poderia ser mais adequada para descrever a remoção de nutrientes específicos que 
sofrem estocagem intracelular (Lee; Jalalizadeh; Zhang, 2015).

CONCLUSÕES
O presente estudo analisou a dinâmica de crescimento microbiano e o consumo 

de substratos em um sistema de remoção de poluentes por meio do modelo cinético 
proposto por Mohiuddin et al. (2022), empregando técnicas de modelagem 
matemática e inferência bayesiana para a estimação de parâmetros.

A solução do problema direto permitiu reproduzir de forma coerente o 
comportamento qualitativo das variáveis experimentais, evidenciando crescimento 
da biomassa e consumo progressivo de carbono, nitrogênio e fósforo. No entanto, 
discrepâncias quantitativas entre as curvas simuladas e os dados experimentais 
indicaram a necessidade de ajuste paramétrico para aprimorar a capacidade preditiva 
do modelo.
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A análise de sensibilidade demonstrou que o parâmetro µMax apresenta a maior 
influência sobre a dinâmica do sistema, especialmente sobre a biomassa e o carbono, 
enquanto os demais parâmetros exibiram sensibilidade reduzida nas condições 
estudadas. Além disso, a dependência linear observada entre µMax e KC inviabilizou 
a estimação simultânea desses parâmetros, justificando a escolha de µMax como 
único parâmetro a ser estimado no problema inverso. 

A estimação bayesiana por meio do método de Monte Carlo via Cadeias de 
Markov, utilizando o algoritmo Metropolis–Hastings, resultou em um valor estimado 
de µMax = 0,5879 h-1, obtido a partir da média da distribuição posterior, com intervalo 
de credibilidade de 99% determinado diretamente a partir dos quantis da posterior. 
A análise do traceplot indicou comportamento estacionário da cadeia após o 
período de aquecimento, evidenciando a convergência adequada do algoritmo e 
a confiabilidade das amostras geradas. 

A utilização do valor estimado de µMax proporcionou melhora no ajuste das 
curvas simuladas em relação aos dados experimentais, especialmente para a 
biomassa e o carbono. Os valores do coeficiente de determinação confirmaram 
esse comportamento, resultando em R2 = 0,9080 para a levedura e R2 = 0,9446 
para o carbono. Para o nitrogênio e fósforo os valores de R2 foram de 0,8513 e 
0,4420, respectivamente, refletindo um menor ajuste dessas dinâmicas aos dados 
experimentais.

Os resultados obtidos demonstram que a abordagem bayesiana adotada foi 
eficaz na estimação de parâmetros cinéticos relevantes, permitindo não apenas 
a obtenção de um valor consistente com os dados experimentais, mas também a 
quantificação explícita da incerteza associada à estimativa. Apesar das limitações 
impostas pela dependência linear entre parâmetros, o estudo evidencia o potencial 
do uso de métodos estocásticos, como o MCMC, na análise e interpretação de 
sistemas biológicos complexos.  	
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