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ABSTRACT: The use of big data and artificial intelligence (Al) has been revolutionary
across all fields, particularly in the search for new pharmacological prototypes for
the pharmaceutical industry. The storage of large datasets, especially in the field
of cheminformatics, has contributed significantly to the advancement of research
focused on the design and synthesis of new drugs through molecular modeling
and chemometrics. As a result, there has been a need to develop new algorithms
and architectures to access these databases and meet the specific demands of the
medical and chemical-pharmaceutical sectors, especially in terms of virtual and in
silico screening.The emergence and development of learning neural networks and
their variants, combined with extensive chemical and biological knowledge, as well
as their associated datasets, have led to a paradigm shift in the way information
is captured and stored in these fields. This review aims to briefly report on the role
and advancements of big data, deep generative models (DGMs), and Al techniques
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in the molecular design of compounds with medicinal potential, exploring various
algorithms and contributing to the development of drugs with greater therapeutic
efficacy for disease treatment.

KEYWORDS: Big data, Artificial intelligence, Chemical compounds, Medicinal
potential.

INTRODUCTION

The processes of synthesis and discovery of new drugs by the pharmaceutical
industry for disease treatment are considered highly complex, costly, and challenging.
It is estimated that each drug requires an investment of approximately US$ 2.5 to
2.8 billion and around 10 years to reach the market. The entire theoretical and
experimental research process involves stages ranging from the identification and
characterization of new molecules to biological, preclinical, and clinical trials, all
properly registered and approved by regulatory agencies. Therefore, it is crucial to
develop and promote efficient strategies that address and minimize these challenges
faced by the industry (Gandwal & Lavecchia, 2024).

In the modern era, technological development combined with the reduction
of instrumentation costs has led to a significant increase in the generation of data
in both quantity and diversity, enabling the acquisition of numerous datasets (Dash
etal., 2019). Thus, the collection of data commonly large in volume and complexity
can be encompassed and analyzed through big data. The substantial growth of data
has resulted in its availability across various platforms, spanning public and private
sectors as well as commercial and industrial domains. In this context, the resulting
data-centered environment has required the acquisition, integration, and analysis
of big data to elucidate complex and challenging issues across multiple fields,
particularly in the scientific, pharmaceutical, and medical communities, among
others (De Mauro et al.,, 2016; Sivarajah et al., 2017).

The emergence of big data has revolutionized the processes and strategies
involved in drug discovery, development, and the identification of new bioactive
molecules. Itis evident how the translation of discoveries from basic research to clinical
practice has become faster and more efficient, and how data-driven approachesin
drug discovery have been successfully achieved (Qian et al., 2019). The availability of
large volumes of data has enabled the exploration of artificial intelligence (Al), which
mimics human intelligence, to strategically address multidimensional challenges
and problems in the process of discovering new pharmacological agents. This
process encompasses all stages from the design and identification of new chemical
structures, molecular modeling, and biological and pharmacological testing, to
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clinical trials and ultimately the use of these compounds as medicines for disease
treatment (Schneider et al., 2020).

Thus, Al applications related to big data analysis in the chemical and
pharmaceutical fields have shown effective and increasingly promising results.
However, some gaps still need to be addressed, which remain challenges despite
the many advances made, thereby allowing for further enhancement of data-driven
and Al led innovations (Zhao et al., 2020).

In this context, cheminformatics is included as a field of information technology
that uses computational resources for the collection, storage, analysis, and
manipulation of large volumes of chemical data, such as formulas, structures,
properties, spectroscopic and spectrometric data, as well as information on the
biological and pharmacological activities of compounds. Furthermore, it has been
characterized as an interdisciplinary science that employs tools from computer science,
data science, and information technology, with applications and contributions
across all areas of chemistry. The use of cheminformatics has demonstrated several
benefits in advanced research, mainly by facilitating the use of computational models
to estimate molecular activity, reducing costs during the drug discovery process,
decreasing the number of animals used in experiments, and contributing to green
chemistry (Wishart, 2016; Alves et al., 2018).

The rapid progress of big data and Al has reorganized and enhanced strategies
for drug design and development, particularly in terms of time efficiency and cost
reduction in synthesis stages. Computational algorithms and models used in these
processes known as virtual screening (VS), utilize data from chemical compound
libraries to perform more reliable analyses, from identifying potential drug candidates
to determining the final synthesis route and industrial production. In this sense,
prior to the synthesis and biological and pharmacological evaluation stages of the
target molecule, Al driven analysis assists quickly and effectively in the identification,
design, and development of bioactive prototypes against different types of diseases
(Réda et al., 2020; Kokudeva et al., 2024).

As a rapidly evolving field, Al encompasses several domains, among which
reasoning, knowledge representation, and machine learning (ML) stand out. Due
to the large volume of data, machine learning has become a widely used tool in
drug discovery. It employs various algorithms and techniques to recognize models
and patterns within the provided datasets. Currently, its main application in drug
design is to identify and explore the relationship between chemical structure and
biological activity, known as the structure—activity relationship (SAR). The emergence
of high-throughput sequencing approaches, such as next-generation sequencing
(NGS), has led to an exponential growth in sequence data, enabling the identification
of potential therapeutic targets (Gandwal & Lavecchia, 2024).
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Machine Learning (ML) approaches have introduced questions about the
understanding of intelligence for the design and development of algorithms capable
of learning from data acquiring knowledge through experience in order to improve
their learning behavior throughout the process. In general, ML has contributed to
the prediction of pharmacological targets using large scale data sources and can
be applied, for example, in healthcare, smart manufacturing, and everyday life
(Peng et al., 2020).

Learning methods are classified into two subcategories: supervised learning
and unsupervised learning methods. In the supervised method, algorithms are
trained with a defined variable Y in an attempt to generate a mathematical function
that generalizes this variable. These methods can be described in at least six types:
random forest (RF), support vector machine (SVM), gradient boosting machine
(GBM), elastic net regularization (EN), deep learning (DL), and deep neural networks
(DNN) (Yang et al., 2019).

The growing increase in data and the limitations of ML approaches have led to
the creation and development of the deep learning (DL) methodology, a subfield
of machine learning that harnesses the power of artificial neural networks (ANNs).
Computational methods for quantitative structure-activity/property relationships
(QSAR/QSPR) are regression models used to predict biological activity as well as to
design drugs based on chemical structure. The ANN model allows for the imitation
of the action of electrical impulses generated by neurons through computational
units referred to as “perceptrons”. These units are commonly interconnected in a
manner similar to neurons in the brain, enabling self-learning (Elton et al., 2019).

Artificial perceptrons in ANNs are part of a group of nodes essential for data
input and output in solving problems at the biological and pharmacological levels.
They are known to play a role in drug research, addressing challenges related
to the complexity of chemical compound screening, as well as in estimating the
pharmacokinetic and pharmacodynamic parameters of molecules. However, there
are at least four other types of ANNs, among which the most notable are: multilayer
perceptron networks (MLPs), recurrent neural networks (RNNs), convolutional neural
networks (CNNs), and autoencoders, which employ supervised and/or unsupervised
learning methods (Fleck et al., 2016).

The present review describes the role of big data and artificial intelligence
in the modern era, focusing on molecular design, planning, and development
of pharmacological prototypes. It also addresses the current “state of the art” in
this field and the supervised and unsupervised methods involved in the process.
Furthermore, it provides an overview of the implementation of big data resources
using advanced Al algorithms and highlights how the current state of knowledge
in machine learning and big data serves as an effective and essential tool in drug
discovery.
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THE IMPLEMENTATION AND EMERGENCE
OF Al IN DRUG MOLECULAR DESIGN

From planning to the development of a drug, there are multiple and distinct
stages, which are often complex and typically require significant time and high
costs for the industry. Additionally, all work must be carried out by multidisciplinary
teams. Advances in new drug development stemming from the Human Genome
Project (HGP) have enabled more precise selection of specific chemical compounds
as targets for a given disease. Compared to traditional approaches, in vitro and in
silico methods offer the major advantage of reducing costs throughout the process.
Moreover, the use of computational methods in the early stages of drug development
also contributes to shortening the time required to identify a pharmacological
prototype with specific therapeutic effects, except in cases where complex side
effects arise (Kokudeva et al., 2024).

The use of modern pipelines in new drug discovery integrates hierarchical
stages, primarily involving: target identification and validation, screening of potential
candidates against the target, and optimization of the identified results to enhance
affinity, selectivity, metabolic stability, and bioavailability. For the selected prototype
to ultimately become a drug, it must demonstrate compatible activity results through
preclinical and clinical assays (Tripathi et al., 2021).

Considering the development and the large amount of information obtained
through computational chemistry, as well as high-throughput screening (HTS)
methods and strategies, significant progress has been made in the rapid screening of
millions of substances with potential biological and pharmacological activity against
specific targets. In this way, the generation of massive data aimed at the discovery of
new pharmacological prototypes has revolutionized modern methods and techniques
for this purpose, marking the transition into the era of big data. Previously, big data
analysis was almost exclusively limited to the field of information technology; however,
today, many other areas such as engineering, healthcare, biological sciences, and
exact sciences have benefited. Consequently, new computational tools and big data
related algorithms have emerged for the management and handling of complex
datasets, particularly those related to drug discovery, fostering studies and research
projects across all fields of knowledge (Roy et al., 2010; Tripathi et al., 2021).

Advances in computer science and technology, along with the emergence of
artificial intelligence (Al) and machine learning (ML) algorithms, have been essential
in the search for optimal molecular designs as drug prototypes, enabling greater
speed, lower costs, selectivity, and efficacy throughout the entire process (Figure
1) (Sliwoski et al., 2014).
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Figure 1. Overview of the growth of machine learning alongside the evolution of
Big Data and computational power. HTS: High-Throughput Sequencing; CPU: Central
Processing Unit; KB: Kilobyte; GPU: Graphics Processing Unit; MB: Megabyte.

In the current landscape, Al and ML combined with Big Data offer numerous
applications. In pharmacology, these include protein folding prediction, protein—
protein interactions, virtual screening, QSAR (Quantitative Structure—Activity
Relationships), and the molecular design of novel drugs.

Several approaches are used to simulate pharmacological prototypes, particularly
high-throughput virtual screening (HTVS), molecular docking, drug modeling, QSAR,
and molecular dynamics. Chemoinformatics plays a key role in early-stage drug
discovery by applying virtual screening (VS) to large chemical libraries, facilitating
the identification of molecules with potential medicinal properties for specific
targets. These methods are typically classified based on either the ligand structure
(Ligand-Based Virtual Screening — LBVS) or the target structure (Structure-Based
Virtual Screening — SBVS) (De Vivo et al., 2016; Alves et al., 2018).

Inligand-based virtual screening, ligands are docked to known protein targets to
analyze protein-ligand interactions, with binding affinity assessed through scoring
functions. These methods utilize molecular descriptors, physicochemical properties,
and structural similarities to identify potential drug candidates based on reference
compounds and database entries (Kadurin et al., 2017).
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The extensive data on chemical structures and protein-ligand interactions has
enabled Al driven inference, further advancing structure-based virtual screening
(SBVS). Machine learning approaches, including support vector machines (SVM),
random forests (RF), and reinforcement learning, have been instrumental in capturing
the nonlinear dependencies governing ligand-target interactions (Lionta et al., 2014).

Deep learning (DL) approaches help overcome information loss during feature
extraction in ML by generating higher-level hierarchical abstractions from Big Data,
reducing reliance on manual feature engineering. Convolutional neural networks
(CNNs) have been adapted for virtual screening, extracting features from small regions
of input data (receptive fields). Tools such as DeepVS and PTPD (Predicting Therapeutic
Peptides) implement CNN-based methods for screening active compounds and
peptide-based ligands, respectively (Wu et al., 2019; Srivastava et al., 2023).

Ligand datasets are typically classified as active or inactive. By analyzing
physicochemical and spatial similarities among active ligands, ML methods can
predict the bioactivity of new compounds, even when target structures are unknown
or imprecise. Consequently, ligand-based ML approaches improve the accuracy of
drug design and activity prediction (Lionta et al., 2014).

Given the vast amount of data and numerous known bioactive compounds,
ML algorithms are essential for analyzing datasets efficiently without compromising
accuracy. Deep learning (DL), a subdivision of ML, enables handling large datasets
and extracting multiple layers of abstraction, supporting both supervised and
unsupervised learning (Elton et al., 2019).

Advances in computational power and open-source libraries such as TensorFlow
and PyTorch have accelerated Al driven discovery of new bioactive molecules and
drugs, significantly benefiting the pharmaceutical and medical fields (Chakraborty
et al., 2024).

BIG DATA DATABASES IN MOLECULAR
DESIGN ACROSS DIFFERENT FIELDS

Databases typically contain diverse data types, which can be raw or processed,
standardized or not. Extracting meaningful insights from such heterogeneous datasets
is highly challenging. Drug development requires integrating data from multiple
interdisciplinary fields, including organic synthesis, structural elucidation, bioassays,
pharmacology, and preclinical and clinical studies. Al is a crucial tool for managing
the complexity and heterogeneity of these datasets (Chakraborty et al., 2024).

The growth of Big Data has driven the need for advanced computational
resources, high-performance computing, cloud technologies, and GPUs. Data from
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Big Data analyses in the search for new pharmacological prototypes can be organized
into different categories or stored across multiple databases.

In the chemical field, there are databases such as ChemSpider (http://www.
chemspider.com/) and Chemicalize (http://chemicalize.com/) that provide
information on molecular chemical structures, chemical and commercial names,
identifiers (e.g., CAS numbers), physical properties, and interactive spectra, among
other data. SciFinder (https://scifinder.cas.org/) allows access to data on the structures
and chemical reactions of over 100 million compounds registered with CAS (https://
www.cas.org/) (Alves et al., 2018).

In the biological field, databases include information on chemical structures and
their activities assessed through in vitro, in vivo, and high-throughput screening (HCS/
HTS) assays. Among the most commonly used databases are ChEMBL (https://www.
ebi.ac.uk/chembl/) and PubChem (http://pubchem.ncbi.nlm.nih.gov/), which provide
biological data related to each compound. DrugBank (https://www.drugbank.ca/)
stores information on approved drugs, including chemical structures, physicochemical
properties, therapeutic uses, pharmacokinetics, toxicology, pharmacodynamics, and
in some cases, molecular targets (Alves et al., 2018). The e-Drug3D platform contains
a database with several collections of SD files featuring 3D structures of known drug
molecules for drug screening. There are also collections containing genomic and
proteomic data available from BindingDB and SuperTarget (Tripathi et al., 2021).

Macromolecule databases can also be included, with emphasis on PDB (Protein
Data Bank, https://www.rcsb.org/) and BMRB (Biological Magnetic Resonance
Data Bank, http://www.bmrb.wisc.edu/), which provide information on proteins,
nucleic acids, and other complex biomacromolecules, serving as a foundation for
research in health sciences, food science, drug design, and more (Alves et al., 2018).

MOLECULAR DESCRIPTORS AND THEIR CLASSIFICATIONS

Knowledge of molecular structures allows addressing important aspects such
as physicochemical properties and biological activity, since the spatial geometry
and nature of functional groups determine a compound’s polarity, intermolecular
forces, solubility, and reactivity. Additionally, these structures are crucial for fitting
into specific enzyme and receptor sites (lock-and-key model), enabling recognition
and interaction with other molecules for example, drugs that must bind to a target
to produce the desired therapeutic effect. However, to predict structure-activity
relationships using computational models, it is necessary to establish appropriate
representations of the drug’s molecular structure, which can be described as a
unigue numerical sequence (Hansch, 1990).
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A molecular descriptor is the result of values derived from logical-mathematical
operations that transform encoded chemical information into a symbolic
representation of a compound (Consonni et al., 2002). Descriptors are typically
structured in a matrix or bit vector (bit vector or STD logic vector).

Furthermore, descriptors can be classified according to their level to make them
suitable for analyses in machine learning, including: one-dimensional (1D), which
considers physicochemical properties and molecular formula (e.g., molecular weight);
two-dimensional (2D), based on properties estimable from a 2D representation (e.g.,
molecular fingerprints, atom counts, connectivity indices); and three-dimensional
(3D), associated with and dependent on the molecule’s 3D spatial conformation
(e.g., volume) (Table 1) (Alves et al., 2018).

Particular properties of

Levels Descriptor class cach descriptor class
0D or count descriptor Atom and bond count, molecular weight
2 1D or fingerprint Molecular weight
Atom and bond count, atomic
3 2D or topological connectivity, drug characteristics,
descriptor adjacency and distance
matrices, molecular weight
4 3D or geometric Potential energy, surface area, shape
(spatial) descriptor and volume, spatial conformation

Table 1. Types of molecular descriptor classes and their levels.

Among the most commonly used molecular representations are the Simplified
Molecular Input Line Entry System (SMILES) and strings. The increase in dimensionality
of descriptor classes (0D/1D/2D/3D), considering the SMILES format or the two-
dimensional structure of compounds, also proportionally reflects the information
content of the descriptors. Currently, various software tools are available, including
Open Babel, PaDEL, Dragon, MOE, PeptiDesCalculator, AlvaDes, QuBiLS-MAS, VolSurf,
and MLR-MobyDigs, among others (Cruciani et al., 2000; Todeschini et al., 2003;
Tripathi et al., 2021).

Spatial occupancy measures of molecules in the training set, obtained through
conformation sampling and alignment spaces, are classified as 4D descriptors. In
this case, 4D-QSAR analysis allows the incorporation of spatial conformational
freedom and alignment in extending 3D-QSAR models using training sets related
to structure-activity relationships. 5D descriptors are an extension of 4D, also
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incorporating conformational freedom to enable comprehensive characterization
of ligand topology within the active site. Furthermore, 6D descriptors have been
developed, which take into account various solvation models (Vedani & Dobler,
2002; Hopfinger et al., 2003).

MACHINE LEARNING: SUPERVISED AND UNSUPERVISED

The machine learning (ML) method focuses on understanding the intelligence
of a design and developing a set of algorithms that can learn from data without
human intervention or explicit instructions. It consists of a process based on three
main steps: data representation, hypothesis optimization, and generalization. This
method is part of a rapidly evolving technical field, involving multiple application
domains, with particular relevance to intelligent industry and healthcare, and can
be applied in everyday life, such as recommendation systems, speech recognition,
autonomous driving, and more (Holzinger, 2019; Lin et al., 2020).

In this method, an equation must be deduced to establish the relationship
between descriptors and activity, defined iteratively according to the chosen function
and algorithm. Subsequently, the hypothesis is evaluated based on its generalization
capability, i.e., the ability of the generated equation to predict biological activity
or properties.

Learning methods can be classified as supervised or unsupervised. Supervised
learning allows training algorithms with a defined target variable (Y) in order to
establish a mathematical function that generalizes this variable. Currently, several
algorithms are used in these cases, including neural networks (NN), random forest
(RF), support vector machines (SVM), among others (Alves et al., 2018).

Furthermore, big data has created many opportunities for the advancement of
machine learning methods, particularly in cases dealing with volume, variety, velocity,
and veracity. Regarding volume, traditional ML algorithms face several challenges,
such as processing time and memory requirements. In terms of variety, data can
exist in different forms/structures, categorized as structured, semi-structured, and
unstructured. Velocity relates to the speed or frequency at which incoming data is
processed. Finally, veracity is directly linked to the reliability and trustworthiness of
the available data (Tripathi et al., 2021).

ML algorithms are commonly used for classification and regression tasks. In
classification tasks, the main focus is on discriminating problems among two or
more classes, whereas regression is concerned with predicting a quantity or a real-
valued variable (Sarker, 2021).
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In the operational workflow for implementing machine learning (ML) prediction
methods in the development and discovery of new drugs, three central steps must be
considered (Figure 2). The first step involves data preprocessing, which requires the
selection and preparation of data for the vast majority of ML algorithms, including
discretization and standardization. The second step, referred to as model learning,
entails the actual implementation of the algorithms in a concrete manner. The final
step, designated as evaluation and validation, is based on performance evaluation
methods and metrics, aiming to monitor and validate the various ML models (Tripathi
etal., 2021).

|/ Models created 4 Determining the
, | through machine I best model for

1 |learning algorithms | screening

' \(RF, KNN, ANN, XG), pharmacological
p candidates

| Descriptor
calculations of
chemical

.\ substances

Normalization,
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Performance-based
model validation
and evaluation

Chemical and

Biological
Databases

Figure 2. Operational workflow of machine learning (ML) in big data for
the development and discovery of new pharmacological candidates.

Unsupervised learning methods are applied in cases where input labels are
unknown, and learning occurs by detecting patterns within the features of high-
dimensional input data. The main objectives of this approach are the grouping
of data subsets based on feature similarity and the quantitative identification of
clusters (hierarchical clustering) present within the data. These methods can also
be used to identify patterns in datasets considering only the descriptors, since the
target variable Y is undefined (Bal et al., 2014).

In the field of chemistry, this approach can identify homogeneous subgroups
even within heterogeneous datasets and can be applied in cases where the analysis
involves assessing the consistency of different datasets and how interferences may
influence activity, potentially revealing new structure—activity relationship (SAR) rules.
In such cases, algorithms such as Principal Component Analysis (PCA), Hierarchical
Cluster Analysis (HCA), and Self-Organizing Maps (SOM) can be employed (Alves
etal., 2018).

Supervised methods are used in situations where a predictive model learns
from an input dataset based on label knowledge. In this way, the labels can train
the machine learning (ML) model to recognize predictive patterns. These methods

BIG DATA AND ARTIFICIAL INTELLIGENCE (Al) AS COMPUTATIONAL TOOLS IN THE DISCOVERY OF COMPOUNDS WITH MEDICINAL POTENTIAL

o
=
>
=
[
<
¥}

1




are fundamentally linked to ML applications, as they involve a predictive model;
therefore, it is possible to generate predictions directly from the trained model
using new input data. This approach relies on labeled training data to estimate a
function and is also applied in cases where objectives need to be achieved through
the establishment of a dataset. The most commonly used tasks are classification
and regression, which focus on separating and fitting the data (Badillo et al., 2020;
Sarker, 2021).

OVERVIEW OF DEEP LEARNING NEURAL NETWORKS

Big data has undergone significant transformations and became revolutionary
with the advent of deep learning neural networks (DLNNs). These networks gained
prominence with the introduction of the ReLU (Rectified Linear Unit) activation
function, which effectively mitigated issues related to the vanishing gradient
problem that could otherwise hinder neural network training from the outset.
Architecturally, DLNNs typically comprise an input layer, an output layer, and multiple
hidden layers. The network’s ability to extract features is closely associated with the
number of hidden layers, such that the complexity of the learned features increases
proportionally with the number of hidden layers (Bui et al., 2020).

Effective training of DLNNs generally requires large datasets, and careful
consideration of various hyperparameters is essential to achieve optimal performance
[86]. These hyperparameters, also referred to as tuning parameters, play a critical role
in shaping the network’s training process and can significantly impact its performance.
They are typically optimized using specific algorithms. Key hyperparametersin DLNNs
include the number of layers, the number of neurons per layer, and the choice of
activation function (Nath & Karthikeyan, 2018).

In this context, an equation (1) was established relating the loss function with
L1 regularization.

n
oss =y, N+AT gl o
i=1

Where:y =true value; y = predicted value; A= parameter controlling the magnitude
of the penalty applied to the model; n = number of features; 8, = model coefficient.

However, in L2-regularized loss, a squared magnitude of the feature coefficients
is used, as shown in equation (2), resulting in uniform shrinkage of the coefficients.
This is particularly important in cases where features are collinear.
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Where:y =true value;y = predicted value; A= parameter controlling the magnitude
of the penalty applied to the model; n = number of features; 8, = model coefficient.

Deep neural networks, which have a considerable number of parameters, can be
attributed to machine learning systems with high computational power. However,
overfitting is one of the main challenges in DLNNs, and to address this issue, the
Dropout technique is applied. The primary goal of Dropout is to randomly remove
units from the network during the training process, preventing the units from co-
adapting excessively. During training, Dropout effectively samples from multiple
thinned networks and can approximate the averages of their predictions using just
one non-thinned network with reduced weights. This approach drastically reduces
overfitting, leading to significant improvements compared to other methods,
while also making the network more efficient in memorization and enhancing
generalization (Figure 3) (Srivastava et al., 2014).

Dropout has also proven to be an important technique for mitigating overfitting.
It involves the random exclusion of a specific percentage of neurons and their
connections across different deep layers of the network. This makes the network
more robust to memorization and improves generalization (Figure 3) (Tripathi et

® ®
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Figure 3. (A): Deep learning neural network (DLNN) without Dropout.
(B) Deep learning neural network (DLNN) with Dropout.
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A BRIEF OVERVIEW OF GENERATIVE ADVERSARIAL
NETWORK ARCHITECTURES

Generative adversarial networks (GANs) are deep neural network architectures
composed of two networks: a generative network and a discriminative network,
that compete against each other. The discriminative network focuses on classifying
and distinguishing between real and fake data, while the generative network
produces fake data based on feedback from the discriminator. In this process, the
discriminator is trained on labeled real data, such as information regarding the
class of a compound. A Nash equilibrium must be achieved during the handling
and optimization of fake data, so that the generated data closely matches the real
data, considering both the generative and discriminative networks, ensuring that
neither the generator’s nor the discriminator’s cost decreases (Man et al., 2025).

Currently, in chemometrics, this tool, along with variations such as conditional
GANs and Wasserstein GANs, has been applied in numerous situations and
applications, particularly in the development and search for new pharmacological
prototypes (Figure 4).

Generator

Stochastic input of
drug information

2D and 3D chemical structures of real
compounds considering conformation
and stereochemistry

l
0"
"

i
|

Collection of drug data
based on chemical
structures

Discriminator

Discriminator
(Correctly classified?)

Figure 4. Generative adversarial network (GAN) architecture
for chemical compounds and pharmaceuticals use.

One of the constitutive forms of DLNNs is the convolutional neural network
(CNN), which is a subset of deep learning widely used for processing grid-structured
data. The applications and tasks of this network are primarily focused on computer
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vision and object recognition. Inspired by biological aspects, this type of network
consists of three main components: the convolutional layer, the pooling layer, and
the fully connected layer (Ayene, 2022; Zhao et al., 2024).

The first layer extracts features from the image, such as color, textures, shapes,
and edges, allowing the production of feature or activation maps. The second layer
is responsible for the spatial dimensionality reduction of these feature maps, which
helps decrease memory usage and mitigate overfitting. The extracted features are
then fed into fully connected (dense) layers, which combine the data for the final
image classification. Among state-of-the-art CNNs for computation and classification
are architectures such as Inception and ResNet. Moreover, the emergence of high-
performance and high-precision CNN models has been applied in computer vision,
autonomous vehicles, content creation, and as an aid in medical diagnosis of diseases,
such as cancer (Zhao et al., 2024).

With the advancement of CNNs, it is now possible to train them to predict
protein-ligand interactions as well as to estimate compound toxicity based on
graphical images (Wang et al., 2023).

AN OVERVIEW OF AUTOENCODERS

Autoencoders (AEs) are defined as a type of neural network architecture that
utilizes unsupervised machine learning and is trained to efficiently encode input
data, followed by the reconstruction or decoding of that data at the output nodes.
They have been widely used for learning from datasets in the design of new bioactive
compounds. Among hidden or latent variables, autoencoders have the ability to
transform inputs into hierarchical representations, generate realistic synthetic data,
or predict anomalies (Figure 5) (Berahmand et al., 2024).

When a completely independent set of input data is provided, it becomes
significantly more challenging for the model to retain the information and provide
an accurate dimensional representation without losses. Due to the distinct and
varying characteristics of the data, it is not possible to anticipate which attribute
will provide the most effective training for a given machine learning algorithm. Over
time, various types of autoencoders have been developed, including conditional,
adversarial, denoising, convolutional, and variational autoencoders (VAEs) (Liu et
al,, 2022).
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Figure 5. (A) lllustration of an autoencoder, where the gray circle
represents the hidden layer. (B) lllustration of a deep autoencoder with
hidden layers, which can be used in training learning algorithms.

The variational autoencoder (VAE) has proven useful in addressing issues of
overfitting and discontinuities in standard autoencoders, as it employs techniques to
regularize actions in the latent space. In addition, individual and separate pointsin
the latent space are replaced through a probability distribution. VAEs have become
avaluable tool in molecule construction, offering new perspectives and approaches
for designing novel structures in drug development (Gomez-Bombarelli et al., 2018).

The conditional variational autoencoder (CVAE), on the other hand, allows
compound properties to be incorporated as information during the encoding
process, which can then be manipulated. This enables the generation of drug-like
chemical structures with specific properties and characteristics, such as hydrogen
bond donor and acceptor centers, molecular weight, logP, and regions with high
electron density and polarity. One of the main advantages of this methodology is
its ability to control the properties and features of each molecule without affecting
the others (Lim et al., 2018).
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USE OF DEEP GENERATIVE MODELS (DGMS) IN THE
DESIGN OF NEW BIOACTIVE COMPOUNDS

In computational terms, a generative model can be regarded as a machine
learning model capable of producing new data that closely resembles the training
data. Generative models using Al are designed to learn the patterns and distributions
of training data, enabling the generation of new content based on the input data.

In the field of new drug design, deep generative models (DGMs) have represented
a significant advancement, particularly for chemical compounds with specific and
required properties. Among these properties, a strong binding affinity to selected
protein targets is particularly notable. DGMs allow the adjustment and optimization
of drug structural features, such as solubility, through fine-tuning of molecular
spectra. Additionally, DGMs are valuable for practical aspects, such as predicting
synthetic routes, and are effective in pharmacology, drug repositioning, and the
design of multi-target drugs. They also enable the early identification of potential
side effects during drug development and provide insights into mechanisms of action,
allowing the generation of molecules for high-throughput screening (HTS) and the
prediction of certain molecular properties during ADMET (absorption, distribution,
metabolism, excretion, and toxicity) analysis (Gangwal & Lavecchia, 2024).

Numerous studies have employed deep generative models (DGMs) to identify
new bioactive compounds using deep learning, particularly during the SARS-CoV-2
pandemic, demonstrating significant advances and success. A notable example is
the work by Bung et al. (2021), which improved a stacked RNN model with transfer
learning (TL) and trained it on approximately 1.5 million ChEMBL compounds to
identify ligands targeting the SARS-CoV-2 viral protease. Using reinforcement
learning (RL), the model quantitatively evaluated features such as molecular similarity,
molecular weight, synthetic accessibility (SA) score, and logP, incorporating the QED
drug-likeness metric. Docking simulations subsequently identified 31 compounds
as potential pharmacological candidates.

RNNs trained on SMILES sequences have also been applied to assess antimicrobial
potential against Staphylococcus aureus and Plasmodium falciparum, producing
promising results in the discovery of new antibacterial agents. Another study
combined deep Q-learning with RNNs to generate SMILES strings with specific
molecular properties. More recently, a hybrid approach combining LSTM networks
with transformer architectures, termed AMPTrans-LSTM, was developed to generate
peptides with diverse antimicrobial activities. While this model has shown multiple
advantages in the antimicrobial domain, further refinement and validation are
required to address challenges such as transformer training stability and to confirm
its efficacy against other microorganisms (Gangwal & Lavecchia, 2024).
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Blaschke et al. (2017) employed a variational autoencoder (VAE) to identify
antagonists of the dopamine type 2 receptor. In a subsequent study, a VAE with a
graph-based latent space incorporating a Gaussian mixture, termed GraphGMVAE,
was developed for scaffold hopping, enabling the generation of compounds with
high precision. This approach also facilitated molecular classification to enhance
method validation, with upadacitinib, a human Janus kinase 1 (JAK1) inhibitor,
serving as a reference. Synthesis and biochemical testing of seven compounds
demonstrated that GraphGMVAE is effective in designing compounds for medicinal
chemistry, producing results comparable to those of human experts. The strategy of
structural modification to improve a drug’s therapeutic potential is a well-established
and widely used tool in the literature. Even when molecular generators perform as
expected, their effectiveness and efficiency must be evaluated according to the core
principles and requirements of medicinal chemistry (Yu et al., 2021).

The initial version of DrugEx, based on reinforcement learning with RNNs (RL-
RNN), was developed and trained to identify compounds targeting G protein-coupled
receptors (GPCRs), which are implicated in cardiovascular diseases and inflammatory
processes, including the adenosine A2A receptor. During training, DrugEx generates
SMILES sequences derived from the ZINC 15 database, incorporating a stochastic
elementto enhance diversity. The results demonstrated that the RNN could produce
awide range of compounds, with the machine-generated bioactives encompassing
those identified using fingerprints of adenosine A2A receptor ligands. Subsequent
updates to DrugEx introduced new encoding strategies, allowing the evaluation of
specific molecular substructures and further refinement of potential compounds
(Gangwal & Lavecchia, 2024).

Currently, despite the significant results achieved with DGM models, there
remains a vast field to explore, both in pharmaceutical and medicinal chemistry
as well as in organic synthesis. Reports in the literature evaluating the efficacy
of these methods in vitro tests have generated considerable interest within the
scientific community, as this is still a relatively unexplored and rapidly growing area,
particularly in the medical field.

DGM AND QSAR MODELS AS REFERENCE
TOOLS IN DRUG DISCOVERY

Deep generative models (DGMs) are primarily designed to construct chemical
structures with pharmacological potential capable of targeting various diseases,
leveraging training datasets. Key databases commonly employed for this purpose
include PubChem and ChEMBL (Hu et al., 2017).
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The performance of deep learning models during training is highly dependent
on data quality, which can be affected by dataset size, coverage and properties of
chemical space, diversity, and potential errors. Integrating publicly available data
with proprietary datasets may introduce redundancies and inaccuracies, potentially
compromising model performance. Standardized assay protocols, particularly
those from the pharmaceutical industry, produce more uniform and homogeneous
datasets. Nonetheless, merging multiple data sources remains complex, highlighting
the importance of careful curation and dataset harmonization to achieve optimal
results when applying DGMs (Yonchev et al., 2018).

Accessible compound activity data often lack negative examples, resulting
in imbalances relative to high-throughput screening (HTS). This limitation can be
mitigated by incorporating negative or decoy data to enhance model training
(Caceres et al., 2020).

Benchmark platforms suggest several evaluation metrics for deep generative
models (DGMs), including validity, novelty, uniqueness, and controllability. Tools such
as Molecular Sets (MOSES) and GuacaMol further enable benchmarking by assessing
structural similarity to reference drugs, synthetic feasibility, and target specificity.
These platforms provide a valuable framework for facilitating the early-stage discovery
of new pharmacological prototypes (Jhanwar et al., 2011; Polykovskiy et al., 2020).

QSAR predictive models are capable of establishing quantitative relationships
between chemical structures and biological activities or chemical properties, employing
mathematical and biostatistical approaches to predict new pharmacological
prototypes and chemical entities. These models can utilize both linear and nonlinear
regression methods (Jhanwar et al.,, 2011).

They rely on datasets encompassing molecular descriptors, physicochemical
and structural characteristics (including hydrophobic, electronic, conformational,
and steric effects), as well as activity data sourced from databases such as ChEMBL
and PubChem (Caceres et al., 2020).

Software tools such as RDKit and the Cheminformatics Toolkit play a crucial
role in evaluating model performance, providing predictions of solubility, toxicity,
mutagenicity, carcinogenicity, drug design, and ADMET parameters across various
chemical structures. Nonetheless, QSAR model benchmarking platforms face
notable challenges, particularly in dataset selection, bias mitigation, and validation
of chemical group predictions. These platforms facilitate virtual screening (VS),
compound optimization, toxicity prediction, and structure-activity relationship (SAR)
analyses, serving as reliable computational tools in chemoinformatics. They enable
the integration of chemical data with corresponding in vitro and in vivo biological
activities based on experimental evidence (Gangwal & Lavecchia, 2024).
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