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ABSTRACT: The use of big data and artificial intelligence (AI) has been revolutionary 
across all fields, particularly in the search for new pharmacological prototypes for 
the pharmaceutical industry. The storage of large datasets, especially in the field 
of cheminformatics, has contributed significantly to the advancement of research 
focused on the design and synthesis of new drugs through molecular modeling 
and chemometrics. As a result, there has been a need to develop new algorithms 
and architectures to access these databases and meet the specific demands of the 
medical and chemical-pharmaceutical sectors, especially in terms of virtual and in 
silico screening.The emergence and development of learning neural networks and 
their variants, combined with extensive chemical and biological knowledge, as well 
as their associated datasets, have led to a paradigm shift in the way information 
is captured and stored in these fields. This review aims to briefly report on the role 
and advancements of big data, deep generative models (DGMs), and AI techniques 



2

CA
PÍ

TU
LO

 1
BI

G
 D

AT
A

 A
N

D
 A

RT
IF

IC
IA

L 
IN

TE
LL

IG
EN

CE
 (A

I) 
A

S 
CO

M
PU

TA
TI

O
N

A
L 

TO
O

LS
 IN

 T
H

E 
D

IS
CO

VE
RY

 O
F 

CO
M

PO
U

N
D

S 
W

IT
H

 M
ED

IC
IN

A
L 

PO
TE

N
TI

A
L

in the molecular design of compounds with medicinal potential, exploring various 
algorithms and contributing to the development of drugs with greater therapeutic 
efficacy for disease treatment.

KEYWORDS: Big data, Artificial intelligence, Chemical compounds, Medicinal 
potential.

INTRODUCTION
The processes of synthesis and discovery of new drugs by the pharmaceutical 

industry for disease treatment are considered highly complex, costly, and challenging. 
It is estimated that each drug requires an investment of approximately US$ 2.5 to 
2.8 billion and around 10 years to reach the market. The entire theoretical and 
experimental research process involves stages ranging from the identification and 
characterization of new molecules to biological, preclinical, and clinical trials, all 
properly registered and approved by regulatory agencies. Therefore, it is crucial to 
develop and promote efficient strategies that address and minimize these challenges 
faced by the industry (Gandwal & Lavecchia, 2024).

In the modern era, technological development combined with the reduction 
of instrumentation costs has led to a significant increase in the generation of data 
in both quantity and diversity, enabling the acquisition of numerous datasets (Dash 
et al., 2019). Thus, the collection of data commonly large in volume and complexity 
can be encompassed and analyzed through big data. The substantial growth of data 
has resulted in its availability across various platforms, spanning public and private 
sectors as well as commercial and industrial domains. In this context, the resulting 
data-centered environment has required the acquisition, integration, and analysis 
of big data to elucidate complex and challenging issues across multiple fields, 
particularly in the scientific, pharmaceutical, and medical communities, among 
others (De Mauro et al., 2016; Sivarajah et al., 2017). 

The emergence of big data has revolutionized the processes and strategies 
involved in drug discovery, development, and the identification of new bioactive 
molecules. It is evident how the translation of discoveries from basic research to clinical 
practice has become faster and more efficient, and how data-driven approaches in 
drug discovery have been successfully achieved (Qian et al., 2019). The availability of 
large volumes of data has enabled the exploration of artificial intelligence (AI), which 
mimics human intelligence, to strategically address multidimensional challenges 
and problems in the process of discovering new pharmacological agents. This 
process encompasses all stages from the design and identification of new chemical 
structures, molecular modeling, and biological and pharmacological testing, to 
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clinical trials and ultimately the use of these compounds as medicines for disease 
treatment (Schneider et al., 2020).

 Thus, AI applications related to big data analysis in the chemical and 
pharmaceutical fields have shown effective and increasingly promising results. 
However, some gaps still need to be addressed, which remain challenges despite 
the many advances made, thereby allowing for further enhancement of data-driven 
and AI led innovations (Zhao et al., 2020).

In this context, cheminformatics is included as a field of information technology 
that uses computational resources for the collection, storage, analysis, and 
manipulation of large volumes of chemical data, such as formulas, structures, 
properties, spectroscopic and spectrometric data, as well as information on the 
biological and pharmacological activities of compounds. Furthermore, it has been 
characterized as an interdisciplinary science that employs tools from computer science, 
data science, and information technology, with applications and contributions 
across all areas of chemistry. The use of cheminformatics has demonstrated several 
benefits in advanced research, mainly by facilitating the use of computational models 
to estimate molecular activity, reducing costs during the drug discovery process, 
decreasing the number of animals used in experiments, and contributing to green 
chemistry (Wishart, 2016; Alves et al., 2018).

The rapid progress of big data and AI has reorganized and enhanced strategies 
for drug design and development, particularly in terms of time efficiency and cost 
reduction in synthesis stages. Computational algorithms and models used in these 
processes known as virtual screening (VS), utilize data from chemical compound 
libraries to perform more reliable analyses, from identifying potential drug candidates 
to determining the final synthesis route and industrial production. In this sense, 
prior to the synthesis and biological and pharmacological evaluation stages of the 
target molecule, AI driven analysis assists quickly and effectively in the identification, 
design, and development of bioactive prototypes against different types of diseases 
(Réda et al., 2020; Kokudeva et al., 2024).

 As a rapidly evolving field, AI encompasses several domains, among which 
reasoning, knowledge representation, and machine learning (ML) stand out. Due 
to the large volume of data, machine learning has become a widely used tool in 
drug discovery. It employs various algorithms and techniques to recognize models 
and patterns within the provided datasets. Currently, its main application in drug 
design is to identify and explore the relationship between chemical structure and 
biological activity, known as the structure–activity relationship (SAR). The emergence 
of high-throughput sequencing approaches, such as next-generation sequencing 
(NGS), has led to an exponential growth in sequence data, enabling the identification 
of potential therapeutic targets (Gandwal & Lavecchia, 2024).
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 Machine Learning (ML) approaches have introduced questions about the 
understanding of intelligence for the design and development of algorithms capable 
of learning from data acquiring knowledge through experience in order to improve 
their learning behavior throughout the process. In general, ML has contributed to 
the prediction of pharmacological targets using large scale data sources and can 
be applied, for example, in healthcare, smart manufacturing, and everyday life 
(Peng et al., 2020).

Learning methods are classified into two subcategories: supervised learning 
and unsupervised learning methods. In the supervised method, algorithms are 
trained with a defined variable Y in an attempt to generate a mathematical function 
that generalizes this variable. These methods can be described in at least six types: 
random forest (RF), support vector machine (SVM), gradient boosting machine 
(GBM), elastic net regularization (EN), deep learning (DL), and deep neural networks 
(DNN) (Yang et al., 2019).

 The growing increase in data and the limitations of ML approaches have led to 
the creation and development of the deep learning (DL) methodology, a subfield 
of machine learning that harnesses the power of artificial neural networks (ANNs). 
Computational methods for quantitative structure–activity/property relationships 
(QSAR/QSPR) are regression models used to predict biological activity as well as to 
design drugs based on chemical structure. The ANN model allows for the imitation 
of the action of electrical impulses generated by neurons through computational 
units referred to as “perceptrons”. These units are commonly interconnected in a 
manner similar to neurons in the brain, enabling self-learning (Elton et al., 2019).

Artificial perceptrons in ANNs are part of a group of nodes essential for data 
input and output in solving problems at the biological and pharmacological levels. 
They are known to play a role in drug research, addressing challenges related 
to the complexity of chemical compound screening, as well as in estimating the 
pharmacokinetic and pharmacodynamic parameters of molecules. However, there 
are at least four other types of ANNs, among which the most notable are: multilayer 
perceptron networks (MLPs), recurrent neural networks (RNNs), convolutional neural 
networks (CNNs), and autoencoders, which employ supervised and/or unsupervised 
learning methods (Fleck et al., 2016).

The present review describes the role of big data and artificial intelligence 
in the modern era, focusing on molecular design, planning, and development 
of pharmacological prototypes. It also addresses the current “state of the art” in 
this field and the supervised and unsupervised methods involved in the process. 
Furthermore, it provides an overview of the implementation of big data resources 
using advanced AI algorithms and highlights how the current state of knowledge 
in machine learning and big data serves as an effective and essential tool in drug 
discovery.
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THE IMPLEMENTATION AND EMERGENCE 
OF AI IN DRUG MOLECULAR DESIGN
From planning to the development of a drug, there are multiple and distinct 

stages, which are often complex and typically require significant time and high 
costs for the industry. Additionally, all work must be carried out by multidisciplinary 
teams. Advances in new drug development stemming from the Human Genome 
Project (HGP) have enabled more precise selection of specific chemical compounds 
as targets for a given disease. Compared to traditional approaches, in vitro and in 
silico methods offer the major advantage of reducing costs throughout the process. 
Moreover, the use of computational methods in the early stages of drug development 
also contributes to shortening the time required to identify a pharmacological 
prototype with specific therapeutic effects, except in cases where complex side 
effects arise (Kokudeva et al., 2024).

The use of modern pipelines in new drug discovery integrates hierarchical 
stages, primarily involving: target identification and validation, screening of potential 
candidates against the target, and optimization of the identified results to enhance 
affinity, selectivity, metabolic stability, and bioavailability. For the selected prototype 
to ultimately become a drug, it must demonstrate compatible activity results through 
preclinical and clinical assays (Tripathi et al., 2021).

Considering the development and the large amount of information obtained 
through computational chemistry, as well as high-throughput screening (HTS) 
methods and strategies, significant progress has been made in the rapid screening of 
millions of substances with potential biological and pharmacological activity against 
specific targets. In this way, the generation of massive data aimed at the discovery of 
new pharmacological prototypes has revolutionized modern methods and techniques 
for this purpose, marking the transition into the era of big data. Previously, big data 
analysis was almost exclusively limited to the field of information technology; however, 
today, many other areas such as engineering, healthcare, biological sciences, and 
exact sciences have benefited. Consequently, new computational tools and big data 
related algorithms have emerged for the management and handling of complex 
datasets, particularly those related to drug discovery, fostering studies and research 
projects across all fields of knowledge (Roy et al., 2010; Tripathi et al., 2021).

Advances in computer science and technology, along with the emergence of 
artificial intelligence (AI) and machine learning (ML) algorithms, have been essential 
in the search for optimal molecular designs as drug prototypes, enabling greater 
speed, lower costs, selectivity, and efficacy throughout the entire process (Figure 
1) (Sliwoski et al., 2014).
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Figure 1. Overview of the growth of machine learning alongside the evolution of 
Big Data and computational power. HTS: High-Throughput Sequencing; CPU: Central 

Processing Unit; KB: Kilobyte; GPU: Graphics Processing Unit; MB: Megabyte. 

In the current landscape, AI and ML combined with Big Data offer numerous 
applications. In pharmacology, these include protein folding prediction, protein–
protein interactions, virtual screening, QSAR (Quantitative Structure–Activity 
Relationships), and the molecular design of novel drugs.

Several approaches are used to simulate pharmacological prototypes, particularly 
high-throughput virtual screening (HTVS), molecular docking, drug modeling, QSAR, 
and molecular dynamics. Chemoinformatics plays a key role in early-stage drug 
discovery by applying virtual screening (VS) to large chemical libraries, facilitating 
the identification of molecules with potential medicinal properties for specific 
targets. These methods are typically classified based on either the ligand structure 
(Ligand-Based Virtual Screening – LBVS) or the target structure (Structure-Based 
Virtual Screening – SBVS) (De Vivo et al., 2016; Alves et al., 2018).

In ligand-based virtual screening, ligands are docked to known protein targets to 
analyze protein–ligand interactions, with binding affinity assessed through scoring 
functions. These methods utilize molecular descriptors, physicochemical properties, 
and structural similarities to identify potential drug candidates based on reference 
compounds and database entries (Kadurin et al., 2017).
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The extensive data on chemical structures and protein–ligand interactions has 
enabled AI driven inference, further advancing structure-based virtual screening 
(SBVS). Machine learning approaches, including support vector machines (SVM), 
random forests (RF), and reinforcement learning, have been instrumental in capturing 
the nonlinear dependencies governing ligand–target interactions (Lionta et al., 2014).

Deep learning (DL) approaches help overcome information loss during feature 
extraction in ML by generating higher-level hierarchical abstractions from Big Data, 
reducing reliance on manual feature engineering. Convolutional neural networks 
(CNNs) have been adapted for virtual screening, extracting features from small regions 
of input data (receptive fields). Tools such as DeepVS and PTPD (Predicting Therapeutic 
Peptides) implement CNN-based methods for screening active compounds and 
peptide-based ligands, respectively (Wu et al., 2019; Srivastava et al., 2023).

Ligand datasets are typically classified as active or inactive. By analyzing 
physicochemical and spatial similarities among active ligands, ML methods can 
predict the bioactivity of new compounds, even when target structures are unknown 
or imprecise. Consequently, ligand-based ML approaches improve the accuracy of 
drug design and activity prediction (Lionta et al., 2014).

Given the vast amount of data and numerous known bioactive compounds, 
ML algorithms are essential for analyzing datasets efficiently without compromising 
accuracy. Deep learning (DL), a subdivision of ML, enables handling large datasets 
and extracting multiple layers of abstraction, supporting both supervised and 
unsupervised learning (Elton et al., 2019).

Advances in computational power and open-source libraries such as TensorFlow 
and PyTorch have accelerated AI driven discovery of new bioactive molecules and 
drugs, significantly benefiting the pharmaceutical and medical fields (Chakraborty 
et al., 2024).

BIG DATA DATABASES IN MOLECULAR 
DESIGN ACROSS DIFFERENT FIELDS
Databases typically contain diverse data types, which can be raw or processed, 

standardized or not. Extracting meaningful insights from such heterogeneous datasets 
is highly challenging. Drug development requires integrating data from multiple 
interdisciplinary fields, including organic synthesis, structural elucidation, bioassays, 
pharmacology, and preclinical and clinical studies. AI is a crucial tool for managing 
the complexity and heterogeneity of these datasets (Chakraborty et al., 2024).

The growth of Big Data has driven the need for advanced computational 
resources, high-performance computing, cloud technologies, and GPUs. Data from 
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Big Data analyses in the search for new pharmacological prototypes can be organized 
into different categories or stored across multiple databases.

In the chemical field, there are databases such as ChemSpider (http://www.
chemspider.com/) and Chemicalize (http://chemicalize.com/) that provide 
information on molecular chemical structures, chemical and commercial names, 
identifiers (e.g., CAS numbers), physical properties, and interactive spectra, among 
other data. SciFinder (https://scifinder.cas.org/) allows access to data on the structures 
and chemical reactions of over 100 million compounds registered with CAS (https://
www.cas.org/) (Alves et al., 2018).

In the biological field, databases include information on chemical structures and 
their activities assessed through in vitro, in vivo, and high-throughput screening (HCS/
HTS) assays. Among the most commonly used databases are ChEMBL (https://www.
ebi.ac.uk/chembl/) and PubChem (http://pubchem.ncbi.nlm.nih.gov/), which provide 
biological data related to each compound. DrugBank (https://www.drugbank.ca/) 
stores information on approved drugs, including chemical structures, physicochemical 
properties, therapeutic uses, pharmacokinetics, toxicology, pharmacodynamics, and 
in some cases, molecular targets (Alves et al., 2018). The e-Drug3D platform contains 
a database with several collections of SD files featuring 3D structures of known drug 
molecules for drug screening. There are also collections containing genomic and 
proteomic data available from BindingDB and SuperTarget (Tripathi et al., 2021).

Macromolecule databases can also be included, with emphasis on PDB (Protein 
Data Bank, https://www.rcsb.org/) and BMRB (Biological Magnetic Resonance 
Data Bank, http://www.bmrb.wisc.edu/), which provide information on proteins, 
nucleic acids, and other complex biomacromolecules, serving as a foundation for 
research in health sciences, food science, drug design, and more (Alves et al., 2018).

MOLECULAR DESCRIPTORS AND THEIR CLASSIFICATIONS
Knowledge of molecular structures allows addressing important aspects such 

as physicochemical properties and biological activity, since the spatial geometry 
and nature of functional groups determine a compound’s polarity, intermolecular 
forces, solubility, and reactivity. Additionally, these structures are crucial for fitting 
into specific enzyme and receptor sites (lock-and-key model), enabling recognition 
and interaction with other molecules for example, drugs that must bind to a target 
to produce the desired therapeutic effect. However, to predict structure–activity 
relationships using computational models, it is necessary to establish appropriate 
representations of the drug’s molecular structure, which can be described as a 
unique numerical sequence (Hansch, 1990).
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A molecular descriptor is the result of values derived from logical-mathematical 
operations that transform encoded chemical information into a symbolic 
representation of a compound (Consonni et al., 2002). Descriptors are typically 
structured in a matrix or bit vector (bit vector or STD logic vector). 

Furthermore, descriptors can be classified according to their level to make them 
suitable for analyses in machine learning, including: one-dimensional (1D), which 
considers physicochemical properties and molecular formula (e.g., molecular weight); 
two-dimensional (2D), based on properties estimable from a 2D representation (e.g., 
molecular fingerprints, atom counts, connectivity indices); and three-dimensional 
(3D), associated with and dependent on the molecule’s 3D spatial conformation 
(e.g., volume) (Table 1) (Alves et al., 2018).

Levels Descriptor class Particular properties of 
each descriptor class

1 0D or count descriptor Atom and bond count, molecular weight
2 1D or fingerprint Molecular weight

3 2D or topological 
descriptor

Atom and bond count, atomic 
connectivity, drug characteristics, 
adjacency and distance 
matrices, molecular weight

4 3D or geometric 
(spatial) descriptor

Potential energy, surface area, shape 
and volume, spatial conformation

Table 1. Types of molecular descriptor classes and their levels.

Among the most commonly used molecular representations are the Simplified 
Molecular Input Line Entry System (SMILES) and strings. The increase in dimensionality 
of descriptor classes (0D/1D/2D/3D), considering the SMILES format or the two-
dimensional structure of compounds, also proportionally reflects the information 
content of the descriptors. Currently, various software tools are available, including 
Open Babel, PaDEL, Dragon, MOE, PeptiDesCalculator, AlvaDes, QuBiLS-MAS, VolSurf, 
and MLR-MobyDigs, among others (Cruciani et al., 2000; Todeschini et al., 2003; 
Tripathi et al., 2021).

Spatial occupancy measures of molecules in the training set, obtained through 
conformation sampling and alignment spaces, are classified as 4D descriptors. In 
this case, 4D-QSAR analysis allows the incorporation of spatial conformational 
freedom and alignment in extending 3D-QSAR models using training sets related 
to structure–activity relationships. 5D descriptors are an extension of 4D, also 
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incorporating conformational freedom to enable comprehensive characterization 
of ligand topology within the active site. Furthermore, 6D descriptors have been 
developed, which take into account various solvation models (Vedani & Dobler, 
2002; Hopfinger et al., 2003).

MACHINE LEARNING: SUPERVISED AND UNSUPERVISED
The machine learning (ML) method focuses on understanding the intelligence 

of a design and developing a set of algorithms that can learn from data without 
human intervention or explicit instructions. It consists of a process based on three 
main steps: data representation, hypothesis optimization, and generalization. This 
method is part of a rapidly evolving technical field, involving multiple application 
domains, with particular relevance to intelligent industry and healthcare, and can 
be applied in everyday life, such as recommendation systems, speech recognition, 
autonomous driving, and more (Holzinger, 2019; Lin et al., 2020).

In this method, an equation must be deduced to establish the relationship 
between descriptors and activity, defined iteratively according to the chosen function 
and algorithm. Subsequently, the hypothesis is evaluated based on its generalization 
capability, i.e., the ability of the generated equation to predict biological activity 
or properties.

Learning methods can be classified as supervised or unsupervised. Supervised 
learning allows training algorithms with a defined target variable (Y) in order to 
establish a mathematical function that generalizes this variable. Currently, several 
algorithms are used in these cases, including neural networks (NN), random forest 
(RF), support vector machines (SVM), among others (Alves et al., 2018).

Furthermore, big data has created many opportunities for the advancement of 
machine learning methods, particularly in cases dealing with volume, variety, velocity, 
and veracity. Regarding volume, traditional ML algorithms face several challenges, 
such as processing time and memory requirements. In terms of variety, data can 
exist in different forms/structures, categorized as structured, semi-structured, and 
unstructured. Velocity relates to the speed or frequency at which incoming data is 
processed. Finally, veracity is directly linked to the reliability and trustworthiness of 
the available data (Tripathi et al., 2021).

ML algorithms are commonly used for classification and regression tasks. In 
classification tasks, the main focus is on discriminating problems among two or 
more classes, whereas regression is concerned with predicting a quantity or a real-
valued variable (Sarker, 2021).
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In the operational workflow for implementing machine learning (ML) prediction 
methods in the development and discovery of new drugs, three central steps must be 
considered (Figure 2). The first step involves data preprocessing, which requires the 
selection and preparation of data for the vast majority of ML algorithms, including 
discretization and standardization. The second step, referred to as model learning, 
entails the actual implementation of the algorithms in a concrete manner. The final 
step, designated as evaluation and validation, is based on performance evaluation 
methods and metrics, aiming to monitor and validate the various ML models (Tripathi 
et al., 2021).

Figure 2. Operational workflow of machine learning (ML) in big data for 
the development and discovery of new pharmacological candidates.

Unsupervised learning methods are applied in cases where input labels are 
unknown, and learning occurs by detecting patterns within the features of high-
dimensional input data. The main objectives of this approach are the grouping 
of data subsets based on feature similarity and the quantitative identification of 
clusters (hierarchical clustering) present within the data. These methods can also 
be used to identify patterns in datasets considering only the descriptors, since the 
target variable Y is undefined (Bal et al., 2014).

In the field of chemistry, this approach can identify homogeneous subgroups 
even within heterogeneous datasets and can be applied in cases where the analysis 
involves assessing the consistency of different datasets and how interferences may 
influence activity, potentially revealing new structure–activity relationship (SAR) rules. 
In such cases, algorithms such as Principal Component Analysis (PCA), Hierarchical 
Cluster Analysis (HCA), and Self-Organizing Maps (SOM) can be employed (Alves 
et al., 2018).

Supervised methods are used in situations where a predictive model learns 
from an input dataset based on label knowledge. In this way, the labels can train 
the machine learning (ML) model to recognize predictive patterns. These methods 
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are fundamentally linked to ML applications, as they involve a predictive model; 
therefore, it is possible to generate predictions directly from the trained model 
using new input data. This approach relies on labeled training data to estimate a 
function and is also applied in cases where objectives need to be achieved through 
the establishment of a dataset. The most commonly used tasks are classification 
and regression, which focus on separating and fitting the data (Badillo et al., 2020; 
Sarker, 2021).

OVERVIEW OF DEEP LEARNING NEURAL NETWORKS
Big data has undergone significant transformations and became revolutionary 

with the advent of deep learning neural networks (DLNNs). These networks gained 
prominence with the introduction of the ReLU (Rectified Linear Unit) activation 
function, which effectively mitigated issues related to the vanishing gradient 
problem that could otherwise hinder neural network training from the outset. 
Architecturally, DLNNs typically comprise an input layer, an output layer, and multiple 
hidden layers. The network’s ability to extract features is closely associated with the 
number of hidden layers, such that the complexity of the learned features increases 
proportionally with the number of hidden layers (Bui et al., 2020).

Effective training of DLNNs generally requires large datasets, and careful 
consideration of various hyperparameters is essential to achieve optimal performance 
[86]. These hyperparameters, also referred to as tuning parameters, play a critical role 
in shaping the network’s training process and can significantly impact its performance. 
They are typically optimized using specific algorithms. Key hyperparameters in DLNNs 
include the number of layers, the number of neurons per layer, and the choice of 
activation function (Nath & Karthikeyan, 2018).

In this context, an equation (1) was established relating the loss function with 
L1 regularization.

               

(1)

Where: y = true value; ŷ = predicted value; λ = parameter controlling the magnitude 
of the penalty applied to the model; n = number of features; βi = model coefficient.

However, in L2-regularized loss, a squared magnitude of the feature coefficients 
is used, as shown in equation (2), resulting in uniform shrinkage of the coefficients. 
This is particularly important in cases where features are collinear.
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(2)

Where: y = true value; ŷ = predicted value; λ = parameter controlling the magnitude 
of the penalty applied to the model; n = number of features; βi = model coefficient.

Deep neural networks, which have a considerable number of parameters, can be 
attributed to machine learning systems with high computational power. However, 
overfitting is one of the main challenges in DLNNs, and to address this issue, the 
Dropout technique is applied. The primary goal of Dropout is to randomly remove 
units from the network during the training process, preventing the units from co-
adapting excessively. During training, Dropout effectively samples from multiple 
thinned networks and can approximate the averages of their predictions using just 
one non-thinned network with reduced weights. This approach drastically reduces 
overfitting, leading to significant improvements compared to other methods, 
while also making the network more efficient in memorization and enhancing 
generalization (Figure 3) (Srivastava et al., 2014).

Dropout has also proven to be an important technique for mitigating overfitting. 
It involves the random exclusion of a specific percentage of neurons and their 
connections across different deep layers of the network. This makes the network 
more robust to memorization and improves generalization (Figure 3) (Tripathi et 
al., 2021).

Figure 3. (A): Deep learning neural network (DLNN) without Dropout. 
(B) Deep learning neural network (DLNN) with Dropout.
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A BRIEF OVERVIEW OF GENERATIVE ADVERSARIAL 
NETWORK ARCHITECTURES
Generative adversarial networks (GANs) are deep neural network architectures 

composed of two networks: a generative network and a discriminative network, 
that compete against each other. The discriminative network focuses on classifying 
and distinguishing between real and fake data, while the generative network 
produces fake data based on feedback from the discriminator. In this process, the 
discriminator is trained on labeled real data, such as information regarding the 
class of a compound. A Nash equilibrium must be achieved during the handling 
and optimization of fake data, so that the generated data closely matches the real 
data, considering both the generative and discriminative networks, ensuring that 
neither the generator’s nor the discriminator’s cost decreases (Man et al., 2025).

Currently, in chemometrics, this tool, along with variations such as conditional 
GANs and Wasserstein GANs, has been applied in numerous situations and 
applications, particularly in the development and search for new pharmacological 
prototypes (Figure 4).

Figure 4. Generative adversarial network (GAN) architecture 
for chemical compounds and pharmaceuticals use.

One of the constitutive forms of DLNNs is the convolutional neural network 
(CNN), which is a subset of deep learning widely used for processing grid-structured 
data. The applications and tasks of this network are primarily focused on computer 
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vision and object recognition. Inspired by biological aspects, this type of network 
consists of three main components: the convolutional layer, the pooling layer, and 
the fully connected layer (Ayene, 2022; Zhao et al., 2024).

The first layer extracts features from the image, such as color, textures, shapes, 
and edges, allowing the production of feature or activation maps. The second layer 
is responsible for the spatial dimensionality reduction of these feature maps, which 
helps decrease memory usage and mitigate overfitting. The extracted features are 
then fed into fully connected (dense) layers, which combine the data for the final 
image classification. Among state-of-the-art CNNs for computation and classification 
are architectures such as Inception and ResNet. Moreover, the emergence of high-
performance and high-precision CNN models has been applied in computer vision, 
autonomous vehicles, content creation, and as an aid in medical diagnosis of diseases, 
such as cancer (Zhao et al., 2024).

With the advancement of CNNs, it is now possible to train them to predict 
protein-ligand interactions as well as to estimate compound toxicity based on 
graphical images (Wang et al., 2023).

AN OVERVIEW OF AUTOENCODERS
Autoencoders (AEs) are defined as a type of neural network architecture that 

utilizes unsupervised machine learning and is trained to efficiently encode input 
data, followed by the reconstruction or decoding of that data at the output nodes. 
They have been widely used for learning from datasets in the design of new bioactive 
compounds. Among hidden or latent variables, autoencoders have the ability to 
transform inputs into hierarchical representations, generate realistic synthetic data, 
or predict anomalies (Figure 5) (Berahmand et al., 2024).

When a completely independent set of input data is provided, it becomes 
significantly more challenging for the model to retain the information and provide 
an accurate dimensional representation without losses. Due to the distinct and 
varying characteristics of the data, it is not possible to anticipate which attribute 
will provide the most effective training for a given machine learning algorithm. Over 
time, various types of autoencoders have been developed, including conditional, 
adversarial, denoising, convolutional, and variational autoencoders (VAEs) (Liu et 
al., 2022).
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Figure 5. (A) Illustration of an autoencoder, where the gray circle 
represents the hidden layer. (B) Illustration of a deep autoencoder with 

hidden layers, which can be used in training learning algorithms.

The variational autoencoder (VAE) has proven useful in addressing issues of 
overfitting and discontinuities in standard autoencoders, as it employs techniques to 
regularize actions in the latent space. In addition, individual and separate points in 
the latent space are replaced through a probability distribution. VAEs have become 
a valuable tool in molecule construction, offering new perspectives and approaches 
for designing novel structures in drug development (Gómez-Bombarelli et al., 2018).

The conditional variational autoencoder (CVAE), on the other hand, allows 
compound properties to be incorporated as information during the encoding 
process, which can then be manipulated. This enables the generation of drug-like 
chemical structures with specific properties and characteristics, such as hydrogen 
bond donor and acceptor centers, molecular weight, logP, and regions with high 
electron density and polarity. One of the main advantages of this methodology is 
its ability to control the properties and features of each molecule without affecting 
the others (Lim et al., 2018).
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USE OF DEEP GENERATIVE MODELS (DGMS) IN THE 
DESIGN OF NEW BIOACTIVE COMPOUNDS
In computational terms, a generative model can be regarded as a machine 

learning model capable of producing new data that closely resembles the training 
data. Generative models using AI are designed to learn the patterns and distributions 
of training data, enabling the generation of new content based on the input data.

In the field of new drug design, deep generative models (DGMs) have represented 
a significant advancement, particularly for chemical compounds with specific and 
required properties. Among these properties, a strong binding affinity to selected 
protein targets is particularly notable. DGMs allow the adjustment and optimization 
of drug structural features, such as solubility, through fine-tuning of molecular 
spectra. Additionally, DGMs are valuable for practical aspects, such as predicting 
synthetic routes, and are effective in pharmacology, drug repositioning, and the 
design of multi-target drugs. They also enable the early identification of potential 
side effects during drug development and provide insights into mechanisms of action, 
allowing the generation of molecules for high-throughput screening (HTS) and the 
prediction of certain molecular properties during ADMET (absorption, distribution, 
metabolism, excretion, and toxicity) analysis (Gangwal & Lavecchia, 2024).

Numerous studies have employed deep generative models (DGMs) to identify 
new bioactive compounds using deep learning, particularly during the SARS-CoV-2 
pandemic, demonstrating significant advances and success. A notable example is 
the work by Bung et al. (2021), which improved a stacked RNN model with transfer 
learning (TL) and trained it on approximately 1.5 million ChEMBL compounds to 
identify ligands targeting the SARS-CoV-2 viral protease. Using reinforcement 
learning (RL), the model quantitatively evaluated features such as molecular similarity, 
molecular weight, synthetic accessibility (SA) score, and logP, incorporating the QED 
drug-likeness metric. Docking simulations subsequently identified 31 compounds 
as potential pharmacological candidates.

RNNs trained on SMILES sequences have also been applied to assess antimicrobial 
potential against Staphylococcus aureus and Plasmodium falciparum, producing 
promising results in the discovery of new antibacterial agents. Another study 
combined deep Q-learning with RNNs to generate SMILES strings with specific 
molecular properties. More recently, a hybrid approach combining LSTM networks 
with transformer architectures, termed AMPTrans-LSTM, was developed to generate 
peptides with diverse antimicrobial activities. While this model has shown multiple 
advantages in the antimicrobial domain, further refinement and validation are 
required to address challenges such as transformer training stability and to confirm 
its efficacy against other microorganisms (Gangwal & Lavecchia, 2024).
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Blaschke et al. (2017) employed a variational autoencoder (VAE) to identify 
antagonists of the dopamine type 2 receptor. In a subsequent study, a VAE with a 
graph-based latent space incorporating a Gaussian mixture, termed GraphGMVAE, 
was developed for scaffold hopping, enabling the generation of compounds with 
high precision. This approach also facilitated molecular classification to enhance 
method validation, with upadacitinib, a human Janus kinase 1 (JAK1) inhibitor, 
serving as a reference. Synthesis and biochemical testing of seven compounds 
demonstrated that GraphGMVAE is effective in designing compounds for medicinal 
chemistry, producing results comparable to those of human experts. The strategy of 
structural modification to improve a drug’s therapeutic potential is a well-established 
and widely used tool in the literature. Even when molecular generators perform as 
expected, their effectiveness and efficiency must be evaluated according to the core 
principles and requirements of medicinal chemistry (Yu et al., 2021).

The initial version of DrugEx, based on reinforcement learning with RNNs (RL-
RNN), was developed and trained to identify compounds targeting G protein-coupled 
receptors (GPCRs), which are implicated in cardiovascular diseases and inflammatory 
processes, including the adenosine A2A receptor. During training, DrugEx generates 
SMILES sequences derived from the ZINC 15 database, incorporating a stochastic 
element to enhance diversity. The results demonstrated that the RNN could produce 
a wide range of compounds, with the machine-generated bioactives encompassing 
those identified using fingerprints of adenosine A2A receptor ligands. Subsequent 
updates to DrugEx introduced new encoding strategies, allowing the evaluation of 
specific molecular substructures and further refinement of potential compounds 
(Gangwal & Lavecchia, 2024).

Currently, despite the significant results achieved with DGM models, there 
remains a vast field to explore, both in pharmaceutical and medicinal chemistry 
as well as in organic synthesis. Reports in the literature evaluating the efficacy 
of these methods in vitro tests have generated considerable interest within the 
scientific community, as this is still a relatively unexplored and rapidly growing area, 
particularly in the medical field.

DGM AND QSAR MODELS AS REFERENCE 
TOOLS IN DRUG DISCOVERY
Deep generative models (DGMs) are primarily designed to construct chemical 

structures with pharmacological potential capable of targeting various diseases, 
leveraging training datasets. Key databases commonly employed for this purpose 
include PubChem and ChEMBL (Hu et al., 2017).
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The performance of deep learning models during training is highly dependent 
on data quality, which can be affected by dataset size, coverage and properties of 
chemical space, diversity, and potential errors. Integrating publicly available data 
with proprietary datasets may introduce redundancies and inaccuracies, potentially 
compromising model performance. Standardized assay protocols, particularly 
those from the pharmaceutical industry, produce more uniform and homogeneous 
datasets. Nonetheless, merging multiple data sources remains complex, highlighting 
the importance of careful curation and dataset harmonization to achieve optimal 
results when applying DGMs (Yonchev et al., 2018).

Accessible compound activity data often lack negative examples, resulting 
in imbalances relative to high-throughput screening (HTS). This limitation can be 
mitigated by incorporating negative or decoy data to enhance model training 
(Cáceres et al., 2020).

Benchmark platforms suggest several evaluation metrics for deep generative 
models (DGMs), including validity, novelty, uniqueness, and controllability. Tools such 
as Molecular Sets (MOSES) and GuacaMol further enable benchmarking by assessing 
structural similarity to reference drugs, synthetic feasibility, and target specificity. 
These platforms provide a valuable framework for facilitating the early-stage discovery 
of new pharmacological prototypes (Jhanwar et al., 2011; Polykovskiy et al., 2020).

QSAR predictive models are capable of establishing quantitative relationships 
between chemical structures and biological activities or chemical properties, employing 
mathematical and biostatistical approaches to predict new pharmacological 
prototypes and chemical entities. These models can utilize both linear and nonlinear 
regression methods (Jhanwar et al., 2011).

They rely on datasets encompassing molecular descriptors, physicochemical 
and structural characteristics (including hydrophobic, electronic, conformational, 
and steric effects), as well as activity data sourced from databases such as ChEMBL 
and PubChem (Cáceres et al., 2020).

Software tools such as RDKit and the Cheminformatics Toolkit play a crucial 
role in evaluating model performance, providing predictions of solubility, toxicity, 
mutagenicity, carcinogenicity, drug design, and ADMET parameters across various 
chemical structures. Nonetheless, QSAR model benchmarking platforms face 
notable challenges, particularly in dataset selection, bias mitigation, and validation 
of chemical group predictions. These platforms facilitate virtual screening (VS), 
compound optimization, toxicity prediction, and structure-activity relationship (SAR) 
analyses, serving as reliable computational tools in chemoinformatics. They enable 
the integration of chemical data with corresponding in vitro and in vivo biological 
activities based on experimental evidence (Gangwal & Lavecchia, 2024).
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