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Abstract: Universities need to anticipate
students’ decisions (enrollment, switching,
progression, dropout). Learning analytics
and credential governance have been trea-
ted as separate domains. This creates a gap:
Al generates insights, but a secure, audita-
ble, institution-wide decision layer to ope-
rationalize them is missing. We pose three
RQs: (how to combine academic, financial,
and engagement data to predict behavior),
(the role of blockchain in ensuring integrity,
auditability, and governance), and (the or-
ganizational capabilities required to deploy
an integrated analytics layer). We adopt a
design-oriented, multi-case approach and
propose the UCAS architecture, which in-
tegrates prediction with blockchain-based
governance and credentials. We analyze six
institutions using public documents and
comparative thematic coding. Three fin-
dings emerge: first, predictive Al exists but
in silos, without cross-unit orchestration;
second, blockchain is used for credential
issuance and verification, not as a gover-
nance layer for the behavioral data lifecycle;
third, integration occurs when predictions
are coupled to traceable operational trig-
gers. Contribution: a model and roadmap
to personalize services, improve retention,
and align sustainability with privacy and
traceability.

Keywords: Predictive algorithms; block-
chain technology; consumer behavior; uni-
versities; artificial intelligence; institutional
management; transactions

Introduction

Educational institutions face the chal-
lenge of understanding and adapting to stu-
dent behavior, as they are considered their
primary consumers (Alsaadi & Bamasoud,
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2021). Factors such as program selection,
learning preferences, and financial transac-
tions require universities to adopt a strate-
gic approach to meet students’ needs and
expectations (Baker & Inventado, 2014).
In this context, predictive algorithms en-
able the analysis of large volumes of data
to forecast student trends and behaviors, fa-
cilitating informed decision-making (Syed
Mustapha, 2023).

On the other hand, blockchain tech-
nology ensures the integrity and transpar-
ency of digital interactions, such as the
management of academic credentials, pay-
ments, and other administrative processes
(Nakamoto, 2009). The integration of both
technologies represents a significant oppor-
tunity to optimize institutional manage-
ment and enhance the educational experi-
ence of students (Casino et al., 2019).

The recent literature on learning an-
alytics and educational data science has
largely treated artificial intelligence as a
predictive instrument for modeling indi-
vidual student performance, dropout risk,
program completion likelihood, or en-
gagement patterns. In parallel, research on
blockchain in higher education has primar-
ily focused on credential issuance and ver-
ification, academic record portability, and
the traceability of learning achievements.
These two streams — Al-driven predictive
analytics and blockchain-enabled creden-
tial governance — have evolved mostly in
isolation. Ciritically, there is very limit-
ed work that connects student behavioral
analytics — treating the student not only
as a learner but also as a decision-making
consumer of institutional services — with
blockchain-based data governance infra-
structures capable of operationalizing those
predictions in a coordinated, auditable, in-
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stitution-wide way. This lack of integration
represents a structural gap: universities are
increasingly able to forecast what students
are likely to do, but they lack a trusted
mechanism to translate those forecasts into
consistent academic, financial, and admin-
istrative action.

This is not only a technical limitation;
it is a strategic one. The ability to antici-
pate enrollment decisions, switching across
academic pathways, financial stress, or po-
tential withdrawal has direct consequences
for (i) student retention and, by extension,
institutional revenue sustainability; (ii) ac-
ademic portfolio planning and the alloca-
tion of teaching and support resources; and
(iii) administrative efficiency in areas such
as financial aid, targeted advising, and the
recognition and communication of student
achievements. Under growing competition,
rising operating costs, and student expec-
tations of personalized service, the absence
of an integrated decision layer that links
behavioral prediction, data traceability, and
accountable institutional response con-
strains universities’ capacity to manage both
academic success and the economic rela-
tionship with each student.

This paper addresses that gap through
a dual contribution. First, it proposes an in-
tegrated conceptual model — here referred
to as the University Consumer Analytics
Stack (UCAS) — which articulates three
layers: (1) multi-source data collection and
modeling of academic performance, finan-
cial behavior, and interactional signals from
students; (2) Al-driven behavioral forecast-
ing aimed at estimating continuation likeli-
hood, enrollment intent, payment risk, and
support needs; and (3) a blockchain-based
governance and orchestration layer that
enables traceability, auditability, and insti-
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tution-wide execution of targeted interven-
tions. Second, the paper applies and refines
this model through a multi-case analysis
of higher education institutions that have
already begun to implement, although of-
ten in a fragmented manner, components
of these layers. In doing so, the goal is not
only to describe current practice, but to of-
fer university leadership a roadmap for con-
verting advanced analytics into reproduc-
ible, transparent, and strategically aligned
decision-making at scale.

Literature Review. Current situation
of artificial Intelligence algorithms
in university consumer behavior

Predictive algorithms rely on ma-
chine learning techniques to identify pat-
terns in large datasets (Casino et al., 2019).
Their application in the university context
includes:

1. Enrollment prediction: Predictive
models analyze historical data to
forecast enrollment in various aca-
demic programs. Factors such as
labor market trends and previous
preferences help design marketing
strategies and academic planning
(Rani, Sachan & Kukreja, 2023).

2. DPersonalization of services: Algori-
thms analyze students” preferences
in using resources such as libraries
or learning platforms to provide
personalized ~ recommendations

that enhance their educational ex-

perience (Sharples & Domingue,

2016).

3. Academic performance manage-
ment: By identifying patterns as-
sociated with academic success or
failure, early interventions such
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as personalized tutoring can be
implemented to improve student
performance (Tapscott & Taps-
cott, 2016).

Research questions

This study is guided by three core rese-
arch questions that address both the analy-
tical and organizational requirements for
deploying Al- and blockchain-enabled deci-

sion intelligence in higher education.

RQ1. How can academic performan-
ce data and transactional/engagement data
about the student-as-consumer be combi-
ned to predict enrollment intention, conti-
nuation likelihood, and dropout risk at the
individual level?

This question targets the predictive
layer. It assumes that student behavior is
not only academic (grades, progression, at-
tendance) but also economic and service-o-
riented (tuition payment patterns, program
switching behavior, platform usage, interac-
tion with support services). The goal is to
understand whether these heterogeneous
data streams can be fused to generate relia-
ble early-warning signals that are actionable
for the institution.

RQ2. What role can blockchain play
in ensuring the integrity, traceability, and
governance of those behavioral predictions
across academic, financial, and administra-
tive units within the university?

Here the focus is not on prediction ac-
curacy, but on trust and accountability. If Al
models are generating individual-level fore-
casts (e.g., “high dropout risk” or “likely to
defer payment”), under what technical and
governance conditions can those forecasts
be shared, audited, and acted upon without
creating opaque decision-making or regula-
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tory exposure (e.g. GDPR non-compliance,
bias claims)? This question positions block-
chain not only as a credential layer, but as
a coordination and accountability layer for
institutional decision-making.

RQ3. What organizational capabilities
must a university develop to operationalize
an integrated Al-blockchain analytics stack
in practice (e.g., processes, roles, governance
structures, intervention protocols)?

This question addresses institutional
readiness. It assumes that predictive insight
alone does not create impact unless the uni-
versity can embed it into workflows: targe-
ted advising, adaptive financial aid, persona-
lized academic pathways, automated alerts,
etc. We ask which capabilities (data gover-
nance, cross-unit coordination, ethical over-
sight, intervention design, student commu-
nication) are required to move from pilots
to sustained, institution-wide deployment.

Optional hypotheses for quantitative
validation.

* Hla. Models that fuse academic
with financial and engagement
features achieve higher accuracy
than academic-only models.

e HI1b. Real-time engagement fe-
atures enable earlier detection of
high-risk students than lagging

academic indicators.

e H2. A blockchain based audit
layer increases perceived proce-
dural fairness and accountability
among internal stakeholders.

e H3. Cross-unit data governance
is positively associated with the
rate of interventions executed after
alerts.
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Conceptual framework: The
University consumer analytics
stack (UCAS)

This study proposes the University
Consumer Analytics Stack (UCAS), an in-
tegrated conceptual model that connects
(i) multi-source student data, (ii) Al-dri-
ven behavioral prediction, and (iii) blo-
ckchain-based governance and execution.
The purpose of UCAS is to articulate how
universities can move from fragmented
analytics initiatives toward an institution-
-wide decision layer that is both predictive
and accountable. The model positions the
student simultaneously as a learner and as
a service consumer whose academic, finan-
cial, and engagement behaviors have strate-
gic implications for retention, resource allo-
cation, program design, and institutional
sustainability.

UCAS is organized into three interde-
pendent layers: (1) the Data Layer, (2) the
Predictive Intelligence Layer, and (3) the
Governance and Orchestration Layer. To-
gether, these layers define how data is cap-
tured, transformed into foresight, and con-
verted into coordinated institutional action.

Data Layer: multidimensional
student behavioral signals

The first layer of UCAS consolida-
tes heterogeneous data streams associated
with each student into a unified analytical
view. We group these streams into three
categories:

1. Academic performance and pro-
gression data: This includes gra-
des, assessment histories, course
completion status, attendance pat-
terns, remediation needs, use of
tutoring resources, and indicators
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of academic stress or underperfor-
mance. These variables represent
the traditional domain of learning
analytics, which seeks to model
academic success and risk.

2. Financial and administrative tran-
saction data: This includes tuition
payment timing, scholarship and
aid utilization, outstanding balan-
ces, deferral requests, installment
behavior, and interactions with
financial services. From a mana-
gement and sustainability pers-
pective, these variables are critical
because they capture the economic
dimension of the student—institu-
tion relationship. They also often
provide early signals of instability,
such as financial distress that pre-
cedes withdrawal.

3. Engagement and interaction
data: This includes platform usa-
ge (LMS logins, time-on-task,
submission punctuality), advising
requests, career services interac-
tions, programme change inqui-
ries, attendance at onboarding or
retention-related  interventions,
and even micro-signals such as
reduced responsiveness to official
communications. These variables
reflect how actively the student is
participating in the broader servi-
ce environment provided by the

university.

Conceptually, UCAS treats these three
categories not as separate operational silos
(academic affairs, finance, student services),
but as facets of a single behavioral profile.
The underlying assumption is that student
continuation, program loyalty, perceived
value, and dropout risk are multi-factor
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decisions that cannot be inferred from aca-
demic metrics alone. In other words, pro-
gression is both an academic trajectory and
a consumption decision.

Within the UCAS model, the output
of this layer is an integrated, temporally
ordered student activity record that can be
used to construct predictive features. This
requires data interoperability and, in prac-
tice, some degree of shared schema across
departments.

Predictive intelligence layer:
Forecasting student decisions

The second layer uses artificial intelli-
gence and advanced analytics to transform
multi-source behavioral data into forward-
-looking institutional signals. This layer per-
forms three core predictive functions:

1. Enrollment and continuation fo-
recasting: Models estimate the
likelihood that an admitted or
currently enrolled student will (re)
enroll in the next academic period,
switch programs, or exit the insti-
tution. This includes identifying
“at-risk” students before they for-
mally disengage and detecting seg-
ments likely to respond to specific
forms of support (academic advi-
sing, flexible payment plans, alter-
native course sequencing, etc.).

2. Dropout and disengagement risk
assessment: By combining acade-
mic underperformance indicators
with financial strain signals and
declining engagement patterns,
this layer estimates short-term wi-
thdrawal probability. Importantly,
in UCAS the relevant output is
not only “high risk / low risk,” but
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also the inferred drivers of that
risk (academic overload, unmet
financial need, weak programme
fit, etc.), because different drivers
imply different interventions.

3. DPersonalization and pathway op-
timization: Predictive models re-
commend tailored actions at the
individual level: alternative course
pathways, modular or micro-cre-
dential options, financial coun-
seling, contact from a retention
advisor, or proactive eligibility re-
view for aid. This is where analy-
tics shifts from diagnostic (“who
is at risk?”) to prescriptive (“what
should we offer, to whom, and
when?”).

The Predictive Intelligence Layer is
not only technical. It encodes institutio-
nal intent. Which outcomes are we trying
to optimize — graduation rate, perceived
student satisfaction, lifetime tuition reve-
nue, regulatory compliance, equity of ac-
cess? UCAS makes this explicit: prediction
is a governance instrument, not just a data
science exercise.

The output of this layer is a set of ac-
tionable predictions and recommended in-
terventions, each tied to specific students or
cohorts, with associated confidence levels
and rationales.

Governance and orchestration
layer: Blockchain-enabled
accountability

The third layer governs how predic-
tions are stored, shared, audited, and acti-
vated across the university. UCAS frames
this layer as blockchain-enabled for three
reasons:
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Data integrity and provenance:
Storing hashes or state commit-
ments of key analytic outputs
(e.g., “student X flagged for finan-
cial risk on [date] due to [driver]”)
on a tamper-evident ledger creates
an auditable trail. This allows the
institution to demonstrate that
interventions were data-driven,
applied consistently, and not ar-
bitrary or discriminatory. It also
protects against post hoc manipu-
lation of records for compliance or
reputational reasons.

Cross-unit coordination and ac-
cess control: Academic services,
financial aid, and student success
offices often operate on different
systems and under different regu-
latory constraints. Smart contract—
mediated access policies can define
who is allowed to view or act on
a given alert, under what condi-
tions, and with what obligations
to log the response. In UCAS,
blockchain acts as a governance
substrate that enforces shared rules
across organizational silos.

Intervention orchestration: UCAS
conceptualizes certain interven-
tions (tuition plan adjustments,
advisor outreach, eligibility review
for micro-credentials or modular
pathways) as triggerable events.
Smart contracts can be used to
register these events, require ack-
nowledgment by  responsible
units, timestamp actions taken,
and record outcomes. This creates
both traceability (“we acted within

48 hours of the risk alert”) and the
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possibility of measuring interven-
tion effectiveness over time.

In this sense, the Governance and Or-

chestration Layer is not just about creden-

tial issuance — the dominant use case in

current blockchain-and-education literatu-

re — but about institutional accountability

in behavioral decision-making. It translates

predictive insight into auditable, policy-a-

ligned action.

Flow of insight to action in UCAS

UCAS is designed as a pipeline:

1.

Data layer to predictive intelligen-
ce layer: The university continuou-
sly aggregates academic, financial,
and engagement data and cons-
tructs behavioral profiles.

Predictive intelligence layer to go-
vernance and orchestration Layer:
Al models generate forecasts (e.g.,
“Student A: 78% probability of
non-continuation next term, like-
ly driven by cumulative payment
delays + low LMS activity”). These
forecasts are written, referenced,
or anchored in a controlled ledger
environment that documents both
the alert and its justification.

Governance and orchestration
layer to institutional interven-
tion: Based on pre-defined poli-
cies encoded as smart contracts or
workflow rules, the relevant unit
(financial aid office, academic ad-
visor, success coach, program di-
rector) is prompted to intervene.
The intervention is logged, along
with timing and type (e.g., “offe-
red revised installment schedule”

/ “adaptive study plan proposed”).
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UCAS: Insight - Accountable Action

Governance & Orchestration Layer

Blockchain-enabled auditability; role-based access
control; policy-encoded triggers; ledgered logs of
alerts, actions and outcomes; institution-wide
coordination.

Predictive Intelligence Layer

Enrollment/continuation forecasting; dropout and
disengagement risk; payment-risk signals;
explainability and driver-aware outputs;
individualized intervention recommendations.

Outcomes &
intervention logs

Data Layer

Academic performance & progression; financial and

administrative transactions; engagement & digital

interactions (LMS activity, advising, support usage,
responsiveness).

T T

Institutional Policies & Student Rights &
Risk Governance Transparency (GDPR)

Image 1. UCAS: Insight -> Accountable Action

Integrating predictive Al and Blockchain for student behavioral forecasting in higher education: A conceptual framework and multicase analisis

<
S
£
<

oo DOI https://doi.org/10.22533/at.ed.8208162614011 8 oo



4. Feedback loop: The outcomes of
interventions (student continues?
resolves balance? re-engages with
coursework?) are captured and
feed back into the Data Layer, im-
proving future model calibration
and informing policy refinement.

This cyclical flow is central to UCAS,
prediction without intervention is inert; in-
tervention without auditability is opaque;
auditability without multi-source data is
superficial. The model therefore treats data
fusion, behavioral forecasting, and block-
chain-governed execution as mutually de-
pendent capabilities rather than isolated
projects.

Theoretical Positioning

Conceptually, UCAS contributes to
three strands of theory:

* Learning analytics and student
success research: UCAS reframes
risk analytics from a purely aca-
demic construct (“likelihood of
failing a course”) to a behavioral-
-economic construct (“likelihood
of discontinuing the institutio-
nal relationship”), aligning stu-
dent success with institutional

sustainability.

* Data governance and trust in Al-
-mediated decision making: By
embedding auditability and ac-
cess control into the architecture,
UCAS positions blockchain as
more than a credential registry.
It frames it as an organizational
trust mechanism that legitimizes
the use of algorithmic predictions
in high-stakes decisions affecting
students.
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e Strategic management of higher
education: UCAS conceptualizes
the university as an integrated deci-
sion system, where academic qua-
lity, financial stability, and service
personalization are co-optimized
through predictive analytics. This
moves beyond the traditional se-
paration between “student affairs,”
“academic affairs,” and “finance,”
and instead models the student as
a shared object of strategic action.

Propositions

To guide empirical examination, the
UCAS framework implies the following hi-
gh-level propositions:

e PI. Universities that integrate aca-
demic, financial, and engagement
data into a unified behavioral pro-
file will generate more accurate
and earlier risk forecasts than insti-
tutions relying on academic signals
alone.

e DP2. The presence of a blockchain-
-governed orchestration layer in-
creases internal accountability and
cross-unit coordination in student
interventions, thereby raising the
likelihood that predictive insights
are translated into timely, concrete
institutional actions.

* DP3. The effectiveness of UCAS is
contingent on organizational rea-
diness: without defined interven-
tion workflows and governance
structures, even high-quality pre-
dictions will not materially impro-
ve retention, progression, or per-
ceived student value.
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These propositions connect the theo-
retical model to evaluation. They also create
a bridge into the following section (Me-
thodology), where UCAS can be examined
empirically (through multi-case analysis)
or validated structurally (through a design
science approach).

Methodology

This study adopts a design-oriented,
multi-case qualitative methodology. The
objective is twofold: (i) to develop and for-
malize the University Consumer Analytics
Stack (UCAS) as an integrated decision
architecture for higher education, and (ii)
to examine to what extent elements of this
architecture already exist in leading institu-
tions, and how they are being used to in-
form academic, financial, and service deci-
sions about students.

The methodology follows a logic con-
sistent with Design Science Research (DSR)
in information systems — in which an arti-
fact (here, UCAYS) is proposed to address an
identified organizational problem — com-
bined with comparative multi-case analysis
to assess the contextual relevance, feasibility,
and institutional preconditions for that arti-
fact to function in practice.

The section is structured as follows:
Section 3.1 describes the research design;
Section 3.2 explains case selection, data
sources, and data collection procedures;
Section 3.3 outlines the analysis strategy;
Section 3.4 discusses validity, reliability,
and limitations; and Section 3.5 summari-
zes ethical and governance considerations
relevant to working with student-related
analytics.
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Research design

The research design is anchored in the

three Research Questions (RQ1-RQ3):

* RQI1: How can academic, finan-
cial, and engagement data about
the student-as-consumer be com-
bined to predict enrollment inten-
tion, continuation likelihood, and
dropout risk?

*  RQ2: What role can blockchain
play in ensuring integrity, trace-
ability, and governance of those
predictions across academic, fi-
nancial, and administrative units?

* RQ3: What organizational capa-
bilities are required for universities
to operationalize such an integra-

ted Al-blockchain analytics stack?

To address these questions, we proceed
in two stages:

Artifact development (conceptual de-
sign stage). We synthesize prior literature on
learning analytics, student retention analy-
tics, financial risk monitoring in higher
education, and blockchain-based credential
governance to construct UCAS, an integra-
ted three-layer model (data, predictive in-
telligence, governance/orchestration). This
corresponds to the classical DSR sequence
of problem definition to objective specifica-
tion to artifact design.

Contextual evaluation (multi-case sta-
ge). We then analyze multiple higher edu-
cation institutions that have implemented
blockchain-enabled
data governance, or both. The objective is
not to “test” UCAS in a statistical sense, but
to (i) map which layers of UCAS are already
present and how they are instantiated; (ii)
identify gaps that prevent full institutional

advanced analytics,

10
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integration; and (iii) infer the organizational
capabilities that enable or block operationa-
lization. This evaluation step corresponds
to DSR’s relevance cycle and environment
grounding.

This combined approach is appropria-
te for an area where full, production-level
integration of Al-driven behavioral fore-
casting with blockchain-governed orches-
tration is still emergent. In such contexts,
explanatory case logic is more informative
than controlled experimentation, because it
reveals institutional constraints, governance
tensions, and translation frictions between
prediction and action — all of which are
central to our research questions.

Case selection and data collection

Case selection logic

We use theoretical sampling rather
than random sampling. Institutions were
selected because they exhibit one or more of
the following characteristics:

1. Mature learning analytics / predic-
tive student success systems. The
institution uses advanced analytics
to forecast academic performance,
progression, or dropout at the in-
dividual student level.

2. Operational use of behavioral or
transactional data for decision-
-making. The institution incor-
porates financial, engagement,

or service-interaction data (e.g.,

tuition payment behavior, advi-

sing interactions, LMS usage) into
its student risk models, retention

strategies, or resource allocation.
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3. Adoption of blockchain for cre-
dentialing, data integrity, or au-
ditability. The institution issues
verifiable academic credentials

onchain or uses distributed ledger

infrastructure to ensure traceabi-
lity of records and/or to support
compliance and accountability in

student-related decision processes.

4. Evidence of institutional coordi-
nation across academic, financial,
and administrative units. The ins-
titution has structures (committe-
es, integrated student success offi-
ces, shared governance protocols,
automated workflows) that trans-
form analytic insight into targeted
intervention.

Universities that meet at least two of
these criteria are considered high-value cases
because they illustrate either partial instan-
tiations of UCAS layers or credible organi-
zational pathways toward full integration.

The resulting sample includes large re-
search-intensive universities, specialized di-
gital or online universities, and institutions
publicly recognized for early adoption of
blockchain-enabled credentialing. This di-
versity is intentional: it allows comparison
across governance models (centralized vs.
federated), student populations (traditional
vs. non-traditional / lifelong learners), and
strategic priorities (academic excellence, re-
tention/revenue stability, credential portabi-

lity, regulatory signaling).

Data sources

Data for each case was drawn from
multiple convergent sources, including:

* Public institutional strategy docu-
ments, digital transformation ro-

1
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admaps, accreditation self-reports,
and student success initiatives.

* Technical descriptions of analytics
platforms, retention dashboards,
enrollment forecasting systems,
and blockchain credentialing in-
frastructures (when disclosed by
the institution or its technology
partners).

* Dolicy documents and governance
frameworks describing how stu-
dent data, predictive alerts, and
intervention decisions are sha-
red across academic affairs, stu-
dent success units, and financial
services.

° Speeches, interviews, statements,
and conference material from
institutional leadership (e.g., Pro-
vost, CIO, VP for Student Suc-
cess, VP for Enrollment Mana-
gement), in which they explicitly
describe analytics-driven decision
processes.

* Regulatory and  compliance
communications (e.g., references
to privacy, bias, auditability, ex-
ternal accreditation requirements,
and traceability of decisions affec-

ting students).

All documents were collected as pu-
blicly available materials or internal-facin-
g-but-publicly-cited summaries (for instan-
ce, presentations at sector conferences that
outline analytics architecture or blockchain
credential pilots). No personally identifiable
student data or confidential student records
were accessed. The unit of analysis is institu-
tional practice and governance, not indivi-
dual students.
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Data Recording

For each institution, we constructed a
structured case profile capturing:

e Which UCAS layers are present
(Data,

Governance/Orchestration).

Predictive  Intelligence,

*  Which data types are explicitly
integrated for decision-making
(academic, financial, engagement/
service).

e Which predictive outcomes are
targeted (enrollment forecasting,
dropout risk, payment default, pa-
thway personalization).

e Whether blockchain or other le-
dger-like infrastructures are used
and for what purpose (credential
issuance, auditability, access con-
trol, workflow orchestration).

* How interventions are triggered,
delivered, and tracked.

*  What organizational entities are
responsible for acting on those
triggers.

These profiles serve as the basis for
cross-case comparison in Results.

Analysis strategy

The analysis proceeded in three steps.

Step 1: Layer mapping

For each case, we coded the evidence
to determine which components of UCAS
were present. For example, if an institution
uses machine learning to generate individu-
alized dropout-risk alerts that are routed to
academic advisors, that maps to the Predic-
tive Intelligence Layer plus partial orchestra-

12
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tion. If an institution issues blockchain-veri-
fiable diplomas but does not use behavioral
analytics to trigger interventions, that maps
primarily to the Governance and Orchestra-
tion Layer in its credentialing form.

Step 2: Capability extraction

We then identified the organizatio-
nal capabilities that appeared necessary to
make each layer operational. These capabi-
lities include data integration infrastructure,
cross-unit governance bodies, intervention
protocols, compliance and ethics review
mechanisms, and mechanisms for accounta-
bility (e.g., audit logs, service-level expecta-
tions for advisor outreach). The goal of this
step is to answer RQ3: Which capabilities
are preconditions for deploying UCAS in

practice?

Step 3: Cross-case comparison
and proposition refinement

Finally, we compared cases along
three axes aligned with the theoretical
propositions:

*  Depth of data fusion (Are acade-
mic, financial, and engagement
signals unified at student level?).

*  Degree of intervention orchestra-
tion (Do predictions lead to coor-
dinated, trackable actions, or are
they dashboards with no operatio-
nal follow-through?).

* Level of auditability and accoun-
tability (Are interventions and de-
cisions traceable, contestable, and
governed under shared policy, or
are they ad hoc and opaque?).

This comparative analysis allowed us to
refine the UCAS propositions, especially P1
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(integration improves predictive value), P2
(blockchain-enabled governance improves
accountability and intervention execution),
and P3 (organizational readiness is a deter-
minant of real impact). Where cases showed
divergence from UCAS expectations, those
divergences were used to qualify the model
and identify constraints.

Validity, reliability, and limitations

Construct validity
We explicitly defined each UCAS layer

and pre-specified what counted as evidence
of that layer. This reduces subjective inter-
pretation when coding cases (e.g., “predic-
tive analytics” is not any dashboard; it must
generate forward-looking, student-level risk
or intent estimates and inform decisions).

Internal validity

Causal claims are treated cautiously.
We do not infer that implementing UCAS
automatically “causes” improved retention
or financial stability. Instead, we exami-
ne whether institutions that approximate
UCAS report that predictive insights are
embedded into repeatable interventions,
and whether governance infrastructures
exist to hold units accountable for acting on
those insights. Causal framing is therefore
institutional and procedural, not statistical.

Reliability

All case profiles were created using
the same template and coding logic. When
similar language (e.g., “personalized lear-
ning,” “student success analytics”) was used
by different institutions to describe different
realities, we recoded it according to UCAS
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definitions rather than institutional marke-
ting language.

External validity /
generalizability

The cases are not claimed to be re-
presentative of the global higher education
sector. ‘They are theoretically informative
(extreme or leading-edge cases) rather than
statistically sampled. The findings therefo-
re speak to feasibility, architectural patter-
ns, and governance requirements for early
adopters. They provide propositions that fu-
ture quantitative work can test at scale (e.g.,
linking specific data-integration capabilities
to observed retention outcomes).

Limitations

The study relies on institutional sel-
freporting, strategic documents, and public
technical descriptions. We do not directly
audit internal databases, measure model ac-
curacy in situ, or observe live student inter-
ventions. As a result, some claims made by
institutions (e.g., on “real-time personaliza-
tion” or “automated early warning”) may re-
flect aspirational or pilot-stage capability ra-
ther than full operational maturity. We treat
these claims analytically but do not assume
their full realized impact unless supporting
procedural evidence is documented.

Ethical, privacy, and governance
considerations

Because UCAS explicitly connects
student-level behavioral predictions to insti-
tutional action, ethical and regulatory con-
siderations are inseparable from methodo-
logical rigor. Three principles guided both

model construction and case analysis:
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Data minimization and
proportionality

The integration of academic, financial,
and engagement data raises the risk of in-
trusive profiling or discriminatory targeting
(e.g., treating students from lower-income
backgrounds as “financial risk” cases). Any
operationalization of UCAS must include
explicit proportionality tests: Is the data
being used necessary and justifiable for the
stated intervention?

Transparency and
contestability

If predictive labels (e.g., “likely to drop
out”) trigger differential treatment, students
must be able to understand and contest tho-
se classifications. We therefore pay particular
attention to whether institutions use block-
chain or audit trails to log how and why an
intervention decision was made, and who
had access to the triggering information.

Compliance and bias
governance

Predictive analytics in education can
reproduce structural bias (e.g., penalizing
non-traditional learners, working students,
or students with caregiving responsibilities).
The Governance and Orchestration Layer in
UCAS is intentionally specified not only as
a ledger, but as a mechanism for monitoring
procedural fairness. In coding each case, we
examine whether any governance body is
explicitly responsible for fairness, equity, or
non-discrimination in the use of predictive

analytics.

In summary, the methodology com-
bines design science (to articulate UCAS
as an actionable institutional architecture)
with comparative case analysis (to evaluate
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how close real institutions are to that archi-
tecture, and what capabilities are required
to operationalize it). This approach directly
supports the research questions by linking
data integration, predictive intelligence, and
blockchain-enabled governance to concrete
patterns of retention strategy, resource allo-
cation, and student-facing intervention.

Design and development
of a university enrollment
prediction algorithm

Predicting the number of enrollments
is essential for a university’s strategic plan-
ning. This includes resource allocation,
quota definition, academic program offe-
rings, and budgeting. A system based on
predictive algorithms enables informed de-
cision-making by utilizing historical data to
identify patterns and trends (Rani, Sachan
& Kukreja, 2023).

Data collection and preparation

The following sources of information
can be used to train the algorithm:

e Historical enrollment data (Casi-
no et al., 2019).

*  Demographic characteristics of
applicants, such as age, gender,
and geographic location (Sharples
& Domingue, 2016).

e Previous academic records, includ-
ing grade point averages and exam
scores (Rani, Sachan & Kukreja,
2023).

e External sources, including so-
cioeconomic indicators and labor
market trends (Tapscott & Tap-
scott, 2016).

DOl https://doi.org/10.22533/at.ed.8208162614011

It is important to consider how the
data preparation will be carried out:

1. Data cleaning: Remove null, du-
plicate, or inconsistent values to
improve data quality (Sharples &
Domingue, 2016).

2. Normalization: Scale numerical
variables to ensure all have equal
weight during model training (Ca-
sino et al., 2019).

3. Categorical variable encoding:
Convert non-numeric data (such
as gender or region) into a format
that the algorithm can process,
such as One-Hot Encoding (Rani,

Sachan & Kukreja, 2023).

Finally, selecting the relevant features
is essential, as not all data are useful. The
features that contribute most to predicting
enrollments should be chosen:

* Student’s academic history (Casi-
no et al., 2019).

* Interaction with digital marketing
campaigns, such as email clicks
and time spent on the website

(Sharples & Domingue, 2016).

* Academic programs of interest
(Rani, Sachan & Kukreja, 2023).

¢ Socioeconomic level and distance
from the university campus (Taps-
cott & Tapscott, 2016).

This can be done using techniques
such as variable correlation analysis or fea-
ture importance analysis with models like
decision trees (Casino et al., 2019).

15

Integrating predictive Al and Blockchain for student behavioral forecasting in higher education: A conceptual framework and multicase analisis

<
S
£
<




Suggested artificial Intelligence
algorithms for the design and
development of the prediction
algorithm

Depending on the available data, dif-
ferent machine learning models can be used
for prediction. Below are the main options

that can be applied.

Multiple linear regression

This model is suitable for a simple
approach that explains how independent
variables affect the number of enrollments
(Montgomery et al., 2012). The base equa-
tion is as follows:

y =Bt B X, +Bx,++B X,

Where:
* yis the number of enrollments.

* X.X,.,x are the predictor

variables.
e [, is the intercept.

o BI’BZ""'Bn are the coefficients asso-
ciated with each variable.

The advantages of using multiple line-
ar regression include its ease of interpreta-
tion for the algorithm user and its ability to
identify linear relationships between diffe-
rent variables (James et al., 2013). On the
other hand, a disadvantage is that this mo-

del cannot capture complex patterns in the
data (Hastie et al., 2009).

Random Forest

A more advanced model than multiple
linear regression, which combines several
decision trees to make predictions (Brei-
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man, 2001). It is useful for capturing non-
-linear relationships between variables.

The process that can be used would be:

1. Create multiple decision trees from
different subsets of the dataset.

2. Average the predictions of the trees
to obtain the final result.

The advantages of using random fo-
rests include their ability to handle complex
and non-linear relationships in the data, as
well as their ability to automatically identify
the most important variables in the model
(Liaw & Wiener, 2002). On the other hand,
a disadvantage is that this model can be
slower and more costly in terms of compu-
tational implementation (Ferndndez-Delga-
doetal., 2014).

Neuronal networkhks

This type of model is especially suita-
ble for problems with large volumes of data
and highly non-linear relationships (LeCun,
Bengio & Hinton, 2015). Neural networks
use multiple layers of interconnected neu-
rons to learn complex patterns in the data.

The suggested architecture would be as
follows:

* Input: Predictor variables such as
age, region, or academic interest.

* Hidden layers: 2-3 hidden layers
with activation functions like
ReLU (Rectified Linear Unit)
(Nair & Hinton, 2010).

*  Output: A single neuron that re-
turns a continuous value to predict
the number of enrollments.

Neural networks are more accurate
than other models due to their ability to an-
alyze complex data and generalize non-obvi-
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ous patterns (Schmidhuber, 2014). Another
important advantage is their flexibility to
capture non-linear relationships between
variables. However, they have disadvantages,
such as the need for a large and clean dataset
to train the model adequately (Goodfellow,
Bengio & Courville, 2016). Additionally,
their interpretation is more difficult com-
pared to simpler models.

Implementation hypothesis

Division de datos Data Division

It is proposed to divide the data into
three subsets to maximize the efficiency
of model training (Goodfellow, Bengio &
Courville, 2016):

e Training (70%): To train the

model.
e Validation (15%): To tune
hyperparameters.

e Testing (15%): To evaluate the fi-

nal performance.

Evaluation metrics

The following metrics will be used to
evaluate the model’s performance (Chollet,
2017; Goodfellow et al., 2016):

e Mean absolute error (MAE):

1 mn
MAFE = — @'—Ai
- ;Zlﬁly Yil

Image 2. Mean absolute error
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* Root mean squarre error (RMSE):

1 Vi
— _ a2
RMSE - ;1 (yi — Ui)

Image 3. Root mean squarre error

e Coefficient of Determination
(R2): Measures how well the mo-
del explains the variance of the

data.

Practical example of using a
university enrollment prediction
algorithm

Let’s suppose a university wants to pre-
dict enrollments for the next semester using
an algorithm.

1. Available data:

e Number of students who have ap-
plied to the university in the last
5 years.

e Conversion rates (percentage of
accepted students who enroll).

*  Advertising campaigns conducted.

e Socioeconomic factors of the
region.

2. Model used: The chosen model is
Random Forest due to its ability
to handle complex nonlinear rela-
tionships and work with a large set
of heterogeneous data (Breiman,

2001).

3. Prediction: The algorithm predicts
that, under current conditions,
a 5% increase in enrollments is
expected due to the success of a
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recent advertising campaign tar-

geting
This prediction provides valuab-

international  students.
le information for strategic de-
cision-making, such as resource
allocation and academic planning

(Chollet, 2017).

Development of the University
services personalization algorithm

Personalizing services is key to improv-
ing the student experience at universities
(Chen et al., 2020). This process involves
adapting services such as academic pro-
grams, wellness resources, extracurricular
activities, and communication strategies
based on students’ preferences and behav-
jors (Xu, 2024). A predictive algorithm
allows for the analysis of large volumes of
data to anticipate students’ specific needs,
increasing their satisfaction and improving
overall performance (Almalawi et al., 2024).

Data collection and
preparation process

The main sources of information that
can be used for the university services per-
sonalization algorithm include:

* Academic data: Enrolled pro-
grams, academic performance,
attendance level (Kurni, Moham-

med & Srinivasa, 2023).
e Demographic Data: Age, gender,

place of residence, socioeconomic
level (Munir et al., 2023).

* Digital behavior: Interactions on
the educational platform (LMS),
website searches, email clicks

(Ngulube & Ncube, 2025).
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* Declared preferences:  Surveys,
registration forms, selected extra-
curricular activities (Kazem et al.,

2022).

e Service usage: TParticipation in
services such as tutoring, schol-
arships, libraries, sports activities
(Gkontzis et al., 2019).

To prepare the data, the following steps
should be followed (Maestre et al., 2023):

e Data Cleaning: Remove duplica-
tes, outliers, and incomplete data.

* Normalization and Scaling: Con-
vert all variables to a uniform ran-
ge to prevent some features from
dominating the model.

Variable
ding: Transform qualitative va-
riables (such as faculty or gender)
into numerical formats using me-

thods like One-Hot Encoding.

*  Categorical Enco-

* Label Creation: Group students
according to similar needs, such
as high academic risk students or
highly engaged students (Zhang et
al., 2021).

Selection of relevant features

To generate this model, it is crucial to
identify the most important features, which
may include:

* Frequency of digital platform
use: Evaluate the time and inter-

action on educational platforms
(Ngulube & Ncube, 2025).

* Grade history: Analyze previous
academic performance to predict
support needs (Kurni, Moham-
med & Srinivasa, 2023).

18

Integrating predictive Al and Blockchain for student behavioral forecasting in higher education: A conceptual framework and multicase analisis

<
S
£
<




Con-

sider the level of participation in

e Extracurricular activities:
activities outside the classroom to
identify additional interests and
needs (Kazem et al., 2022).

*  External factors: Place of residence
and socioeconomic level as predic-
tors of access to certain resources
(Munir et al., 2023).

To use these features, the following
techniques can be applied (Maestre et al.,
2023):

* Correlation analysis: evaluate the
relationship between variables and
the desired outcome.

e Feature importance analysis: Use
models like Random Forests to
measure the relevance of each va-

riable (Gkontzis et al., 2019).

Suggested predictive Al
algorithms for university
services personalization

Various approaches can be used depen-
ding on the data and analysis objectives (Ka-
zem et al., 2022). Below are the main mo-
dels suitable for generating the algorithm.

Modlel 1: Student Segmentation

K-Means is a clustering algorithm that
divides students into different groups based
on common characteristics (Maestre et al.,

2023).

The process can be carried out as
follows:

1. Select the number of groups (k)
using a method like the elbow
method (cluster analysis). This
method is used to determine the
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number of clusters in a dataset

(Gkontzis et al., 2019).

2. Assign each student to the nearest
group based on their distance to
the centroids.

3. Iteratively readjust the centroids
until the
the group is minimized (Kurni,
Mohammed & Srinivasa, 2023).

internal variance of

To apply the process as indicated:

e Segment students according to
profiles: academically lagging stu-
dents, students interested in spe-
cific extracurricular activities, etc.

(Ngulube & Ncube, 2025).

The advantages of using this method
are that it is easy to interpret and quick to
implement, making it ideal for creating per-
sonalized service groups. However, it is sen-
sitive to noisy data and variable scaling,.

Model 2: Decision trees and Random
forests

Decision trees are useful for predicting
specific services that should be recommen-
ded to a student based on their characteris-
tics (Zhang et al., 2021). Random forests

combine multiple trees to improve accuracy.

The process can be carried out as
follows:

1. Train the tree with data on stu-
dent characteristics and their past
choices.

2. Evaluate the importance of the
features to identify which variables
most influence personalization.

3. Use the random forest to reduce
the risk of overfitting and improve
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generalization (Almalawi et al.,
2024).

To apply the process as indicated:

e DPredict which services (tutoring,
scholarships, activities) are most
relevant to a student.

The advantages of using this method
are that it is robust against incomplete or
noisy data and provides clear explanations
of which features influence the recommen-
dation (Xu, 2024).

Model 3: Neural Networks

Suitable for complex personalizations
based on large volumes of data, such as stu-
dents’ digital interactions (Ngulube & Ncu-
be, 2025).

The architecture can be designed as
follows:

* Input layer: Student features (de-
mographics, service usage, digital
interactions).

* Hidden layers: Two or three layers
with ReLU or Sigmoid activations.

e Output layer: Vector with specific
recommendations (e.g., probabili-
ty of using tutoring services, inter-
est in sports activities, etc.) (Kurni,
Mohammed & Srinivasa, 2023).

To apply the process as indicated:

* DPredict multiple needs simulta-
neously (e.g., probability of en-
rolling in specific courses and
participating in sports activities)
(Munir et al., 2023).

The advantages of using this architec-
ture are that it is excellent for complex and
nonlinear data, and it can learn interactions
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between multiple variables. However, this
architecture requires large amounts of data
and a longer training time for the predictive
algorithm (Gkontzis et al., 2019).

Evaluation of the model used

The metrics to evaluate the performan-
ce of the predictive algorithm for university
services personalization include:

* Accuracy: How well the mo-
del correctly classifies or predicts
(Brownlee, 2021).

* F1 Score: Balance between pre-
cision and recall (Kazem et al.,
2022).

* Confusion Matrix: Evaluate speci-
fic errors in predictions (Zhang et
al., 2021).

*  Mean squared error (MSE): In re-
gression models, measures the dif-

ference between predicted and ac-
tual values (Maestre et al., 2023).

Implementation of the
personalization algorithm

We should follow these steps for im-
plementation, as determined by the process:

1. Integration of the model into an
LMS (Learning Management Sys-
tem): Display personalized recom-
mendations in real-time, such as
learning resources or events (Chen

et al., 2020).
Send

emails or messages based on the

2. Personalized notifications:

algorithm’s predictions (e.g., invi-
tations to activities that align with
the students interests) (Kurni,
Mohammed & Srinivasa, 2023).
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3. Visualization dashboard: Provide
reports to administrators on the
general and specific needs of stu-

dents (Almalawi et al., 2024).

Practical example of using a
university services personalization
prediction

A university implements a system ba-
sed on random forests to personalize its ser-

vices (Gkontzis et al., 2019).
* Input: Demographic data, pre-

viously selected activities, and

LMS usage.

e Prediction: The model indicates
that 70% of first-year students
need math tutoring and 30% are
interested in marketing activities

(Kazem et al., 2022).

e Action: The university organizes
tutoring sessions and promotes
marketing activities among these
groups.

Development of the academic
perfomance management
algorithm

Students’ academic performance is
one of the key factors in the success of uni-
versities. Predicting academic performance
allows institutions to identify at-risk stu-
dents, personalize intervention strategies,
and optimize resources to improve educa-
tional outcomes (Maestre et al., 2023). This
algorithm is designed to anticipate students’
performance based on historical, demogra-
phic, and behavioral data, using machine
learning techniques and advanced analytics

(Gkontzis et al., 2019).
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Data collection and
preparation process

The main sources of information that
can be used for the academic performance
management algorithm include:

e Academic data: Partial and fi-
nal grades from previous cours-
es, number of courses taken and
passed, and cumulative weighted
average (CWA) (Kurni, Moham-
med & Srinivasa, 2023).

*  Demographic data: Age, gender,
socioeconomic level, geographic
location (Munir et al., 2023).

* Learning behavior: Use of educa-
tional platforms (LMS), participa-
tion in tutoring, class attendance

(Ngulube & Ncube, 2025).

e External factors: Internet connec-
tivity level, part-time employment,
family environment (Xu, 2024).

To prepare the data, the following steps
should be followed (Maestre et al., 2023):

* Data cleaning: Remove duplica-
tes, incomplete, or inconsistent
records.

* Variable transformation: Encode
categorical variables (e.g., gender)
using techniques like One-Hot
Encoding.

e Normalization: Scale numerical
variables to a uniform range to
prevent any from dominating the
calculations.

e Label generation: Classify per-
formance as “high,” “medium,”
or “low” based on predefined

thresholds (e.g., CWA > 4.0 =

“high performance”).
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Selection of relevant features

To select the features, the following te-
chniques can be used:

* Correlation analysis: Identify the
variables most related to academ-
ic performance (e.g., class atten-
dance, previous grades) (Gevor-
gyan, 2025).

* Feature importance: Use models
like Random Forests or XGBoost
to measure the influence of each
variable on the predictions (Brei-
man, 2001).

Key features typically include:
¢ Previous cumulative average.

e Darticipation in extracurricular

activities.

*  Use of LMS platforms (number of
logins, resources downloaded).

* Socioeconomic factors (e.g., fa-
mily income).

Design of predictive algorithms
for academic performance
management

Various approaches can be used de-
pending on the data and analysis objectives.
Below are the main models suitable for ge-
nerating the algorithm.

Model  1:
classification

Logz'stic regression for

A statistical model that predicts the
probability of a student belonging to a cate-
gory (e.g., high performance).
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The formula that can be used for this
logistic regression model for classification
would be the following:

1
1+ 6*(50+51X1+ﬁ2X2+- B Xn)

Ply=11X) =

Image 4. Regression model for classification

The application would be to classi-
fy students according to their probability
of achieving “high” performance in their
studies.

The advantages of using this model are
that it is simple to implement and interpret,
and it is ideal for binary or multiclass pro-
blems (e.g., high, medium, or low perfor-
mance) (Hosmer et al., 2013).

Model 2: Random forests

Random forests combine multiple de-
cision trees to improve accuracy and avoid
overfitting (Breiman, 2001).

The process to follow would be:

1. Train muldple trees on random
subsets of the data.

2. Combine their predictions by vo-
ting to classify or averaging for
regression.

The application would be to identify
at-risk students and predict the most in-
fluential variables in performance (Cutler et

al., 2007).

The advantages of using this model are
that it is robust against missing or noisy data
and can identify the relative importance of
features.
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Modelo 3: Neural networks

The neural network model is an ad-
vanced model capable of identifying com-
plex nonlinear relationships in the data.

The architecture can be designed as
follows:

* Input layer: Student features (pre-
vious grades, attendance, etc.).

* Hidden layers: 2 or 3 layers with
ReLU activations.

*  Output layer: Performance predic-
tion (probability of belonging to
each category).

The application of this model would

be to predict multiple academic performan-

ce metrics with high accuracy (LeCun et al.,
2015).

The advantage of using this method is
its high performance in complex tasks with
large volumes of data.

Model training and evaluation
The data will be split as follows:

e 70% of the data will be used for
training the model.

e  30% of the data will be used for
testing.
The model evaluation metrics will

include:

* Accuracy: Percentage of correct
predictions (Gevorgyan, 2025).

* Recall and precision: Evaluate the
balance between false positives and
negatives.

e F1 Score: Harmonic mean be-
tween precision and recall (Pow-
ers, 2011).
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e Confusion Matrix: Visualize cor-
rect and incorrect classifications

(Sammut & Webb, 2010).
e Mean absolute error (MAE): For

regression models, measures the
average magnitude of errors (Will-
mott & Matsuura, 2005).

It is necessary to perform cross-valida-
tion of the data, using K-fold cross-valida-
tion (Refaeilzadeh et al., 2009) to ensure the
model is robust and generalizes well to new
data.

Implementation of the
academic performance
management algorithm

We should follow these steps for

implementation:

* Integration into a Learning Manage-
ment System (LMS): The algorithm
can generate personalized alerts for at-
risk students (Zhang et al., 2021).

* Monitoring dashboards: Visualize key
metrics such as model predictions, in-
fluential variables, and intervention
rates.

e Automated interventions: Recom-
mend tutoring, additional materials,
or specific resources to students with
projected low performance (LeCun et

al., 2015).

Practical example of using
academic performance
management prediction
algorithm

A university implements a system to
manage the academic performance of its
students.
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e Input: A student’s academic history,
tutoring attendance, LMS usage, and
demographic data.

* Output: The model predicts that the
student has an 85% probability of

achieving low performance.

* Action: The university automatically
assigns personalized tutoring and
sends notifications about academic
improvement strategies.

Blockchain: A technology for
the traceability and security of
educational data in universities

The rise of emerging technologies, such
as blockchain and predictive algorithms, of-
fers opportunities to improve educational
and administrative processes in universities
(Tapscott & Tapscott, 2016). Blockchain
technology provides a decentralized, secure,
and immutable system for managing data
(Jaime, 2019). Some of its most relevant
applications in the university context are:

1. Management  of  academic

credentials:

* Issuance of immutable digital degrees,
certificates, and grades (Jaime, 2020).

e Instant and secure verification of cre-
dentials by third parties (employers,
institutions).

2. Management of academic records:
* Decentralized recording of student
data, such as completed courses, atten-
dance, participation in extracurricular

activities, and achievements (Maestre
etal.,, 2023).

3. Financial transactions:
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* Automation of tuition and scholarship
payments through smart contracts

(Chen et al., 2018).
4. Research traceability:

* Ensuring intellectual property and au-
thenticity of university publications
and projects (Yli-Huumo et al., 2016).

5. Management of Digital identities:

* Providing each student with a unique
and verifiable digital identity (Gkont-
zis et al., 2019).

Integration of blockchain
technology and predictive Al
algorithms in universities

The combination of blockchain and
predictive algorithms allows overcoming
challenges related to the quality, security,
and privacy of educational data. This inte-
gration ensures that predictive algorithms
work with accurate and reliable informa-
tion, while respecting privacy and optimi-
zing university processes (Chen etal., 2018).

Management of university
student data

Blockchain can act as a secure and de-
centralized repository for storing student
data, such as:

e Grades.
e Attendance records.
¢ Exam results.

e Use of virtual learning platforms

(LMS).
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The advantages that blockchain te-
chnology brings to predictive algorithms
include:

1. Data integrity: Data stored on blo-
ckchain is immutable, eliminating
the risk of manipulation or cor-
ruption (Rani, Sachan & Kukreja,
2023).

2. Single source: Algorithms can ac-
cess a reliable data record to make
accurate predictions (Sharples &
Domingue, 2016).

3. Real-Time updates: Changes in
students’ academic progress can be
reflected on blockchain and im-
mediately used by the algorithms
(Gkontzis et al., 2019).

One use of blockchain technology
combined with predictive algorithms would
be to analyze the academic history stored on
blockchain to identify patterns suggesting
a risk of dropout. The university can qui-
ckly intervene with tutoring or support pro-
grams (Alammary et al., 2019).

Personalization of learning

Predictive algorithms analyse student
data to recommend personalized learning
strategies. Blockchain technology facilitates
this personalization using digital student
identities, which contain relevant informa-
tion such as:

* Preferred learning methods.
* Resources used on LMS platforms.

e Previous assessments.

The operation of such personalized
learning using predictive algorithms combi-

ned with blockchain technology would be:
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1. Blockchain stores the student’s
academic data and preferences.

2. Predictive algorithms process this
data and suggest:

¢ Personalized courses.
e Additional resources.
* Activities to enhance learning.

The key benefit of combining the-
se two technologies is that personalization
improves the educational experience and
fosters better academic performance (Rani,

Sachan & Kukreja, 2023).

Automation through smart
contracts

Smart contracts on blockchain allow
automating processes related to predictive
interventions, eliminating the need for ma-
nual intervention (Chen et al., 2018).

A practical example of combining
blockchain technology and predictive algo-
rithms for automation through smart con-
tracts could be as follows:

1. A predictive algorithm detects that
a student is at high risk of dro-
pping out of university.

2. A smart contract is automatically
triggered to:
* Notify the student and tutors.

* Release resources such as scholarships
or personalized counseling.

¢ Record the intervention on blockchain
to ensure traceability.

The impact of combining these two te-
chnologies is that automation ensures inter-
ventions are quick and effective, optimizing
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university resources (Sharples & Domin-
gue, 20106).

Ethics, privacy and
transparency

One of the biggest challenges in using
predictive algorithms is the lack of trans-
parency in the decisions they make. Block-
chain technology can address this issue by
recording in its system:

¢ The decisions made by the algorithms.
¢ The variables used to make predictions.

The benefits that blockchain techno-

logy combined with predictive algorithms
could bring include:

* Auditability: Students can verify how
and why decisions were made based on
predictions (Gkontzis et al., 2019).

* Privacy: Blockchain allows students to
control what data they share with the
algorithms (Alammary et al., 2019).

* Regulatory compliance: The integra-
tion ensures that universities comply
with regulations such as GDPR, pro-
tecting sensitive data (Rani, Sachan &
Kukreja, 2023).

Results. Projects in

the implementation of
blockchain technology and
predictive Al algorithms

at the university

This section reports the multicase
analysis by mapping (i) which UCAS layers
are present in each institution, (ii) how
multi-source student data are used for pre-
diction and decision-making, and (iii) how
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blockchain is currently deployed for creden-
tial assurance or governance. The analysis is
interpreted in light of the established lear-
ning-analytics and blockchain-in-education
literatures, which emphasize individualized
risk prediction and auditable credential in-
frastructures, respectively (Romero & Ven-
tura, 2020; Alammary et al., 2019; Sharples
& Domingue, 2016).

Comparative Case Overview

Table 1 summarizes core UCAS-a-
ligned variables per case: integrated data
sources for prediction, targeted outcomes,
blockchain deployment focus, degree of au-
tomated orchestration, and primary institu-
tional priority.

Two immediate observations arise.
First, the most mature multi-source pre-
dictive uses (academic, engagement and
financial) are found where retention/reve-
nue pressures are explicit (Public Research
University; Digital-First University), alig-
ning with evidence that combining hetero-
geneous signals improves educational risk
detection (Zhang et al., 2021; Almalawi et
al., 2024). Second, blockchain deployments
cluster around verifiable credentials and
institutional = signaling (e.g., Melbourne’s
micro-credential pilot), consistent with the
educational blockchain literature (Universi-
ty of Melbourne, 2017; Sharples & Domin-
gue, 2010).

Cross case Analysis
Degree of data fusion

A clear gradient appears in data
integration:
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Inteorated Dat Level of Automat- P
ntegrated Data . . K rim:
L 8 Targeted Predictive / | Blockchain De- | ed Orchestration . a.ry
Institution Sources Used > Institutional
. Decision Outcome ployment Focus |/ Smart Contract L.
for Prediction . . Priority
Like Triggers
Academic perfor- L d
. e . L. ow—moderate: )
mance, program Early identification Verifiable digital ) ] Academic
: . . blockchain mainly
progression, engage- | of academic risk and credentials and . excellence,
g . . for credential o
MIT ment with digital | progression bottlenecks; | tamper-evi- . . signaling of
. . issuance; inter- :
learning platforms; | personalized pathway dent records of ) credential trust
o ; ) . vention workflows o
limited financial recommendations achievement and portability
L . largely manual
behavior integration
Academic metrics,
LMS engagement
g, g Exploratory work
data, advising Moderate: alerts
. . Dropout / stop out on secure data . Student success
interactions, sup- o ) .| routed to advising/
Stanford ] risk, time to degree sharing and audit- and reten-
L port service usage; Do ) o success offices; . .
University ) ’ optimization, allocation | ability rather than . tion, advisor
emerging attention . escalation proto- ;
. of advising resources large-scale cre- . efficiency
to well-being / . cols semi-formal
dential issuance
support-seek-
ing patterns
Enrollment Full blockchain . .
) . o Moderate-high: Credential
behavior, program | Enrollment conversion, | credentialing; o
. e o . smart-contract portability,
L selection decisions, | payment reliability, on-chain proof . o
University o [ . logic for creden- global signaling,
L payment timing, pathway personalization | of completion; o
of Nicosia : ) ) o ] tial issuance and revenue through
interaction with for specialized block- emphasis on ] o o
) . verification is specializa-
decentralized chain/crypto programs | student-owned T . : )
i institutionalized | tion niches
learning platforms records
. Moderate: partial
Academic progress, . . Block- ) P
] - Lifelong learning . automation of .
micro-credential ) .| chain-backed / o Lifelong learner
. o pathway modeling, mi- .| issuing recog-
University of | uptake, continuing ) . ledger-backed dig- | . . re-engagement
; . cro-credential stacking, | . ] nized credentials;
Melbourne education behavior, ital certificates for | .. . and brand
. learner re-engagement . . limited automa- .
career services - micro-credentials | . reputation
after graduation tion of retention
engagement and short courses | . .
interventions
Academic perfor-
mance, attendance | Early dropout risk No production High for analytics
Publi patterns, tuition prediction, proactive blockchain; gov- | triggers: risk alerts
ublic . i )
payment behavior, | retention outreach, ernance handled | auto-generate Retention and
Research : . . . . o
. missed deadlines, targeted financial through internal | advisor outreach | revenue stability
University . . . > .
financial aid usage, | intervention (e.g., compliance/ tasks and financial
LMS disengage- revised payment plans) | audit offices aid review
ment signals
Clickstream
data from online Continuation prob- Blockchain Moderate—high:
platforms, pacing | ability per module, primarily for intervention work- | Scalable
Digital-First | in selfdirected churn prediction portable verifiable | flows partially personalization
University modules, pay- between modules, certificates and automated (pay- | and conversion
ment installment upsell to next certificate | proof of skills for | ment plan offers, | efficiency
behavior, support | / specialization track employability outreach nudges)
ticket history
Table 1. Cross case comparison of UCAS relevant capabilities
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High fusion of academic + finan-
cial + engagement data. Public Re-
search University and Digital-First
University fuse tuition/payment
timing, LMS inactivity, missed ad-
ministrative steps, and performan-
ce indicators into individualized
alerts that trigger retention and
financial-aid actions—a pattern
consistent with best-practice ear-
ly-warning models (Zhang et al.,
2021; Romero & Ventura, 2020).

Academic/engagement integration
with limited financial variables.
Stanford and MIT empbhasize pro-
gression modeling and personali-
zation but treat financial/adminis-
trative signals in separate systems,
a siloing commonly noted in im-
plementations preceding full data
governance alignment (Alammary
etal., 2019).

Consumer-behavior orientation.
The University of Nicosia tracks
program choices and payment
behavior as market signals for pa-
thway personalization and conver-
sion—an approach coherent with
blockchain-credential = ecosystems
aimed at student-owned records
and portability (Sharples & Do-
mingue, 2016).

Lifelong-learner  horizon. Mel-
bourne focuses on stackable mi-
cro-credentials and re-engagement
over time, leveraging credential
portability to shape long-term le-
arner trajectories (University of
Melbourne, 2017).
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o

Predictive intelligence and
intervention logic

All institutions deploy predictive/ear-

ly-warning logic, but for distinct managerial

purposes:

Retention and risk mitigation. Pu-
blic Research University and Stan-
ford route alerts to advising/tu-
toring/financial-aid with defined
service —expectations—consistent
with literature linking predicti-
ve alerts to operational student-

-success workflows (Zhang et al.,
2021).

Pathway steering and demand
shaping. MIT and Digital-First
University use prediction to re-
commend feasible pathways and
progression, a use aligned with
program-design and resource-allo-
cation perspectives in learning
analytics (Romero & Ventura,
2020).

Product/portfolio strategy. Mel-
bourne and Nicosia analyze which
credential formats drive persisten-
ce and perceived value, resonating
with blockchain-enabled micro-
-credential ecosystems (University
of Melbourne, 2017; Alammary et
al., 2019).

Blockchain as Governance
and Orchestration Layer

Across cases, blockchain is most mature

in credential integrity and portability—e.g.,

verifiable certificates and micro-creden-

tials—rather than in internal orchestration

of predictive interventions. This pattern

mirrors the broader field’s current emphasis
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(Sharples & Domingue, 2016; Alammary et
al., 2019).

Selective signs of internal auditability
appear (timestamped actions, immutable
logs), but smart-contract-driven cross-unit
triggers remain rare in production. Where
automation exists (e.g., outreach/job tickets,
payment-plan offers), it is typically CRM-
-based rather than ledger-governed, despite
the potential of smart contracts to encode

rules and reduce discretion (Casino et al.,
2019; Chen et al., 2018).

Organizational capabilities

Three recurrent enablers distinguish
operational from pilot-level practice:

* Cross-unit data governance bodies

that align enrollment management,
student
and finance—turning analytics from
dashboards into task assignment (Ro-
mero & Ventura, 2020).

academic affairs, success,

* Defined escalation protocols for ad-
visor outreach and documentation,
which are prerequisites for any move
toward verifiable, auditable interven-
tion workflows (Casino et al., 2019).

* Executive framing of analytics as stra-
tegy, especially in micro-credential
ecosystems that depend on verifiable
records and external trust (University
of Melbourne, 2017; Sharples & Do-
mingue, 20106).

Key Findings
Finding 1. Partial UCAS implementa-

tions are common; full end-to-end integra-
tion is not yet observed.
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Institutions tend to be strong in one or
two layers (e.g., predictive + workflows; or
credential blockchain) but do not yet con-
nect predictive outputs to a blockchain-go-
verned intervention layer. This reflects the
current state of the field (Sharples & Do-
mingue, 2016; Alammary et al., 2019).

Finding 2. High-performing predicti-
ve use cases treat students as both learners
and consumers, integrating financial and
engagement signals with academics.

Where tuition/payment and engage-
ment signals are fused with academic indi-
cators, institutions report earlier and more
actionable risk detection, consistent with
empirical reviews (Zhang et al., 2021; Al-
malawi et al., 2024).

Finding 3. Blockchain is currently le-
veraged primarily for external trust (verifia-
ble credentials), not yet for internal accoun-
tability of data-driven interventions.

Credential assurance is production-
-ready; orchestration via smart contracts re-
mains emergent (University of Melbourne,
2017; Sharples & Domingue, 2016; Casino
etal.,, 2019).

Finding 4. Formalized intervention
workflows convert predictive alerts into ma-
nagerial infrastructure.

Defined
(who acts, when, how logged) are the deci-

service-level  expectations
sive step from pilots to operations, aligning
with implementation guidance in the lear-
ning-analytics literature (Romero & Ventu-
ra, 2020).

Finding 5. Organizational capabi-
lity is the principal bottleneck to UCAS

realization.

Al methods and even blockchain pi-
lots are available, but without cross-unit go-
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vernance and auditable workflows, predicti-
ve insights remain siloed (Chen et al., 2018;
Casino et al., 2019).

Discussion. Future research
on university consumer
behavior combining
predictive algorithms and
blockchain technology

The combination of predictive algori-
thms and blockchain not only transforms
the current experience but also creates new
opportunities for the future:

1. Competency based education:
Blockchain can store micro-cre-
dentials obtained in specific cou-
rses, allowing students to demons-
trate acquired skills in a granular
manner (Gonzélez and Ferndndez,

2022).

2. Educational marketplace: With
blockchain, universities could cre-
ate decentralized platforms where
students select courses, professors,
and specific resources according to
their needs, democratizing educa-
tion (Maestre et al., 2023).

3. Holistic predictions: As algori-
thms are fed more data (academic,
social, financial), predictions will
become more accurate, enabling
increasingly effective intervention
strategies (Maestre et al., 2023).

4. Expansion of decentralized educa-
tional networks: More universities
could join global blockchain ne-
tworks, creating an interoperable
educational ecosystem (Xu, 2024).
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5. Universal portable credentials: Stu-
dents will be able to easily transfer
their academic records between
institutions without administrati-
ve barriers (Mata & Cruz, 2022).

6. Micro credentials: Blockchain will
allow the issuance of certificates
for specific courses or acquired
skills, promoting continuous lear-
ning (Maestre et al., 2023).

Conclusions

The integration of predictive algo-
rithms and blockchain technology in the
university environment not only transforms
how institutions manage their internal pro-
cesses but also redefines the experience of
the university consumer, i.e., the students.
These technological tools offer advanced so-
lutions to personalize, predict, and optimize
interactions between students and universi-
ties. Below are key conclusions derived from
the analysis of their applications and bene-
fits, accompanied by relevant references.

Transformation in the educational
experience of the University
consumer

Personalization of learning

Predictive algorithms allow the iden-
tification of patterns in student behavior
through the analysis of large volumes of
data, such as:

* Participation in classes and digital
platforms.

e Grades.

* Learning preferences. This leads to
the creation of personalized educa-
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tional experiences, tailored to the
individual needs of each student.

The impact has been that personaliza-
tion improves student satisfaction and enga-
gement, significantly reducing the universi-
ty dropout rate.

Evidence according to Romero and
Ventura (2020), the use of predictive mo-
dels in education improves academic per-
formance and increases motivation by pro-
viding tailored recommendations.

Improvement in student
decision - making

By offering predictions about student
performance and possible academic trajec-
tories, students can make more informed
decisions about courses, specializations, and
career goals.

The impact has been that improved
student decision-making positions univer-
sities as proactive agents in their students
success, increasing their confidence in the
institution.

Reduction of student dropout
through early risk identification

Predictive algorithms can detect signs
of potential student dropout, such as:

* Lack of engagement in academic
activities.

* DPoor academic performance.

* Economic or personal problems re-
flected in external data.

The impact has been that by imple-
menting intervention strategies based on
these models, universities can offer persona-
lized tutoring, financial support, and coun-
seling to at-risk students.
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Evidence from Zhang et al. (2020) ob-
served a 25% reduction in dropout rates at
universities that employed predictive analy-
tics to develop support programs.

Trust and transparency through
blockchain technology

Secure and transparent
dredential management

Blockchain technology allows the re-
cording of academic credentials such as de-
grees, certificates, and student achievements
on an immutable network. This eliminates
forgery and facilitates verification by em-
ployers. The impact has been that students
have greater control over their data, which
builds trust in institutions. Evidence from
Sharples and Domingue (2016) highlights
that blockchain significantly improves trust
in academic management systems.

Protection of personal data

Blockchain technology, being decen-
tralized, ensures that students can decide
who has access to their data and under what
conditions, complying with regulations
such as GDPR. The impact has been the
empowerment of the university consumer
and strengthens the trust relationship be-
tween students and universities.

Operational efficiency and
automation

Smart Contracts

Smart contracts automate administra-
tive processes such as:

¢ Enrollments.
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* Scholarship assignments.
e Issuance of certificates.

The impact has been that operation-
al efficiency increases, allowing universities
to allocate more resources to learning and
innovation.

Resource optimization

By combining blockchain technology
with predictive algorithms, universities can
foresee future demands, such as tutor assign-
ments or course planning. The impact has
been cost reduction and improved educa-
tional experience. Evidence from Casino et
al. (2019) concludes that blockchain-based
automation is key to reducing bureaucracy
in the education sector.
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