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Abstract: Universities need to anticipate 
students’ decisions (enrollment, switching, 
progression, dropout). Learning analytics 
and credential governance have been trea-
ted as separate domains. This creates a gap: 
AI generates insights, but a secure, audita-
ble, institution-wide decision layer to ope-
rationalize them is missing. We pose three 
RQs: (how to combine academic, financial, 
and engagement data to predict behavior), 
(the role of blockchain in ensuring integrity, 
auditability, and governance), and (the or-
ganizational capabilities required to deploy 
an integrated analytics layer). We adopt a 
design-oriented, multi-case approach and 
propose the UCAS architecture, which in-
tegrates prediction with blockchain-based 
governance and credentials. We analyze six 
institutions using public documents and 
comparative thematic coding. Three fin-
dings emerge: first, predictive AI exists but 
in silos, without cross-unit orchestration; 
second, blockchain is used for credential 
issuance and verification, not as a gover-
nance layer for the behavioral data lifecycle; 
third, integration occurs when predictions 
are coupled to traceable operational trig-
gers. Contribution: a model and roadmap 
to personalize services, improve retention, 
and align sustainability with privacy and 
traceability.

Keywords: Predictive algorithms; block-
chain technology; consumer behavior; uni-
versities; artificial intelligence; institutional 
management; transactions

Introduction

Educational institutions face the chal-
lenge of understanding and adapting to stu-
dent behavior, as they are considered their 
primary consumers (Alsaadi & Bamasoud, 

2021). Factors such as program selection, 
learning preferences, and financial transac-
tions require universities to adopt a strate-
gic approach to meet students’ needs and 
expectations (Baker & Inventado, 2014). 
In this context, predictive algorithms en-
able the analysis of large volumes of data 
to forecast student trends and behaviors, fa-
cilitating informed decision-making (Syed 
Mustapha, 2023).

On the other hand, blockchain tech-
nology ensures the integrity and transpar-
ency of digital interactions, such as the 
management of academic credentials, pay-
ments, and other administrative processes 
(Nakamoto, 2009). The integration of both 
technologies represents a significant oppor-
tunity to optimize institutional manage-
ment and enhance the educational experi-
ence of students (Casino et al., 2019).

The recent literature on learning an-
alytics and educational data science has 
largely treated artificial intelligence as a 
predictive instrument for modeling indi-
vidual student performance, dropout risk, 
program completion likelihood, or en-
gagement patterns. In parallel, research on 
blockchain in higher education has primar-
ily focused on credential issuance and ver-
ification, academic record portability, and 
the traceability of learning achievements. 
These two streams – AI-driven predictive 
analytics and blockchain-enabled creden-
tial governance – have evolved mostly in 
isolation. Critically, there is very limit-
ed work that connects student behavioral 
analytics – treating the student not only 
as a learner but also as a decision-making 
consumer of institutional services – with 
blockchain-based data governance infra-
structures capable of operationalizing those 
predictions in a coordinated, auditable, in-
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stitution-wide way. This lack of integration 
represents a structural gap: universities are 
increasingly able to forecast what students 
are likely to do, but they lack a trusted 
mechanism to translate those forecasts into 
consistent academic, financial, and admin-
istrative action.

This is not only a technical limitation; 
it is a strategic one. The ability to antici-
pate enrollment decisions, switching across 
academic pathways, financial stress, or po-
tential withdrawal has direct consequences 
for (i) student retention and, by extension, 
institutional revenue sustainability; (ii) ac-
ademic portfolio planning and the alloca-
tion of teaching and support resources; and 
(iii) administrative efficiency in areas such 
as financial aid, targeted advising, and the 
recognition and communication of student 
achievements. Under growing competition, 
rising operating costs, and student expec-
tations of personalized service, the absence 
of an integrated decision layer that links 
behavioral prediction, data traceability, and 
accountable institutional response con-
strains universities’ capacity to manage both 
academic success and the economic rela-
tionship with each student.

This paper addresses that gap through 
a dual contribution. First, it proposes an in-
tegrated conceptual model – here referred 
to as the University Consumer Analytics 
Stack (UCAS) – which articulates three 
layers: (1) multi-source data collection and 
modeling of academic performance, finan-
cial behavior, and interactional signals from 
students; (2) AI-driven behavioral forecast-
ing aimed at estimating continuation likeli-
hood, enrollment intent, payment risk, and 
support needs; and (3) a blockchain-based 
governance and orchestration layer that 
enables traceability, auditability, and insti-

tution-wide execution of targeted interven-
tions. Second, the paper applies and refines 
this model through a multi-case analysis 
of higher education institutions that have 
already begun to implement, although of-
ten in a fragmented manner, components 
of these layers. In doing so, the goal is not 
only to describe current practice, but to of-
fer university leadership a roadmap for con-
verting advanced analytics into reproduc-
ible, transparent, and strategically aligned 
decision-making at scale.

Literature Review. Current situation 
of artificial Intelligence algorithms 
in university consumer behavior

Predictive algorithms rely on ma-
chine learning techniques to identify pat-
terns in large datasets (Casino et al., 2019). 
Their application in the university context 
includes:

1.	 Enrollment prediction: Predictive 
models analyze historical data to 
forecast enrollment in various aca-
demic programs. Factors such as 
labor market trends and previous 
preferences help design marketing 
strategies and academic planning 
(Rani, Sachan & Kukreja, 2023).

2.	 Personalization of services: Algori-
thms analyze students’ preferences 
in using resources such as libraries 
or learning platforms to provide 
personalized recommendations 
that enhance their educational ex-
perience (Sharples & Domingue, 
2016).

3.	 Academic performance manage-
ment: By identifying patterns as-
sociated with academic success or 
failure, early interventions such 
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as personalized tutoring can be 
implemented to improve student 
performance (Tapscott & Taps-
cott, 2016).

Research questions

This study is guided by three core rese-
arch questions that address both the analy-
tical and organizational requirements for 
deploying AI- and blockchain-enabled deci-
sion intelligence in higher education.

RQ1. How can academic performan-
ce data and transactional/engagement data 
about the student-as-consumer be combi-
ned to predict enrollment intention, conti-
nuation likelihood, and dropout risk at the 
individual level?

This question targets the predictive 
layer. It assumes that student behavior is 
not only academic (grades, progression, at-
tendance) but also economic and service-o-
riented (tuition payment patterns, program 
switching behavior, platform usage, interac-
tion with support services). The goal is to 
understand whether these heterogeneous 
data streams can be fused to generate relia-
ble early-warning signals that are actionable 
for the institution.

RQ2. What role can blockchain play 
in ensuring the integrity, traceability, and 
governance of those behavioral predictions 
across academic, financial, and administra-
tive units within the university?

Here the focus is not on prediction ac-
curacy, but on trust and accountability. If AI 
models are generating individual-level fore-
casts (e.g., “high dropout risk” or “likely to 
defer payment”), under what technical and 
governance conditions can those forecasts 
be shared, audited, and acted upon without 
creating opaque decision-making or regula-

tory exposure (e.g. GDPR non-compliance, 
bias claims)? This question positions block-
chain not only as a credential layer, but as 
a coordination and accountability layer for 
institutional decision-making.

RQ3. What organizational capabilities 
must a university develop to operationalize 
an integrated AI–blockchain analytics stack 
in practice (e.g., processes, roles, governance 
structures, intervention protocols)?

This question addresses institutional 
readiness. It assumes that predictive insight 
alone does not create impact unless the uni-
versity can embed it into workflows: targe-
ted advising, adaptive financial aid, persona-
lized academic pathways, automated alerts, 
etc. We ask which capabilities (data gover-
nance, cross-unit coordination, ethical over-
sight, intervention design, student commu-
nication) are required to move from pilots 
to sustained, institution-wide deployment.

Optional hypotheses for quantitative 
validation.

•	 H1a. Models that fuse academic 
with financial and engagement 
features achieve higher accuracy 
than academic‑only models.

•	 H1b. Real‑time engagement fe-
atures enable earlier detection of 
high‑risk students than lagging 
academic indicators.

•	 H2. A blockchain based audit 
layer increases perceived proce-
dural fairness and accountability 
among internal stakeholders.

•	 H3. Cross‑unit data governance 
is positively associated with the 
rate of interventions executed after 
alerts.



DOI https://doi.org/10.22533/at.ed.8208162614011

A
rt

ic
le

 1
In

te
gr

at
in

g 
pr

ed
ic

tiv
e 

A
I a

nd
 B

lo
ck

ch
ai

n 
fo

r s
tu

de
nt

 b
eh

av
io

ra
l f

or
ec

as
tin

g 
in

 h
ig

he
r e

du
ca

tio
n:

 A
 co

nc
ep

tu
al

 fr
am

ew
or

k 
an

d 
m

ul
tic

as
e 

an
ál

isi
s

5

Conceptual framework: The 
University consumer analytics 
stack (UCAS)

This study proposes the University 
Consumer Analytics Stack (UCAS), an in-
tegrated conceptual model that connects 
(i) multi-source student data, (ii) AI-dri-
ven behavioral prediction, and (iii) blo-
ckchain-based governance and execution. 
The purpose of UCAS is to articulate how 
universities can move from fragmented 
analytics initiatives toward an institution-
-wide decision layer that is both predictive 
and accountable. The model positions the 
student simultaneously as a learner and as 
a service consumer whose academic, finan-
cial, and engagement behaviors have strate-
gic implications for retention, resource allo-
cation, program design, and institutional 
sustainability.

UCAS is organized into three interde-
pendent layers: (1) the Data Layer, (2) the 
Predictive Intelligence Layer, and (3) the 
Governance and Orchestration Layer. To-
gether, these layers define how data is cap-
tured, transformed into foresight, and con-
verted into coordinated institutional action.

Data Layer: multidimensional 
student behavioral signals

The first layer of UCAS consolida-
tes heterogeneous data streams associated 
with each student into a unified analytical 
view. We group these streams into three 
categories:

1.	 Academic performance and pro-
gression data: This includes gra-
des, assessment histories, course 
completion status, attendance pat-
terns, remediation needs, use of 
tutoring resources, and indicators 

of academic stress or underperfor-
mance. These variables represent 
the traditional domain of learning 
analytics, which seeks to model 
academic success and risk.

2.	 Financial and administrative tran-
saction data: This includes tuition 
payment timing, scholarship and 
aid utilization, outstanding balan-
ces, deferral requests, installment 
behavior, and interactions with 
financial services. From a mana-
gement and sustainability pers-
pective, these variables are critical 
because they capture the economic 
dimension of the student–institu-
tion relationship. They also often 
provide early signals of instability, 
such as financial distress that pre-
cedes withdrawal.

3.	 Engagement and interaction 
data: This includes platform usa-
ge (LMS logins, time-on-task, 
submission punctuality), advising 
requests, career services interac-
tions, programme change inqui-
ries, attendance at onboarding or 
retention-related interventions, 
and even micro-signals such as 
reduced responsiveness to official 
communications. These variables 
reflect how actively the student is 
participating in the broader servi-
ce environment provided by the 
university.

Conceptually, UCAS treats these three 
categories not as separate operational silos 
(academic affairs, finance, student services), 
but as facets of a single behavioral profile. 
The underlying assumption is that student 
continuation, program loyalty, perceived 
value, and dropout risk are multi-factor 
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decisions that cannot be inferred from aca-
demic metrics alone. In other words, pro-
gression is both an academic trajectory and 
a consumption decision.

Within the UCAS model, the output 
of this layer is an integrated, temporally 
ordered student activity record that can be 
used to construct predictive features. This 
requires data interoperability and, in prac-
tice, some degree of shared schema across 
departments.

Predictive intelligence layer: 
Forecasting student decisions

The second layer uses artificial intelli-
gence and advanced analytics to transform 
multi-source behavioral data into forward-
-looking institutional signals. This layer per-
forms three core predictive functions:

1.	 Enrollment and continuation fo-
recasting: Models estimate the 
likelihood that an admitted or 
currently enrolled student will (re)
enroll in the next academic period, 
switch programs, or exit the insti-
tution. This includes identifying 
“at-risk” students before they for-
mally disengage and detecting seg-
ments likely to respond to specific 
forms of support (academic advi-
sing, flexible payment plans, alter-
native course sequencing, etc.).

2.	 Dropout and disengagement risk 
assessment: By combining acade-
mic underperformance indicators 
with financial strain signals and 
declining engagement patterns, 
this layer estimates short-term wi-
thdrawal probability. Importantly, 
in UCAS the relevant output is 
not only “high risk / low risk,” but 

also the inferred drivers of that 
risk (academic overload, unmet 
financial need, weak programme 
fit, etc.), because different drivers 
imply different interventions.

3.	 Personalization and pathway op-
timization: Predictive models re-
commend tailored actions at the 
individual level: alternative course 
pathways, modular or micro-cre-
dential options, financial coun-
seling, contact from a retention 
advisor, or proactive eligibility re-
view for aid. This is where analy-
tics shifts from diagnostic (“who 
is at risk?”) to prescriptive (“what 
should we offer, to whom, and 
when?”).

The Predictive Intelligence Layer is 
not only technical. It encodes institutio-
nal intent. Which outcomes are we trying 
to optimize — graduation rate, perceived 
student satisfaction, lifetime tuition reve-
nue, regulatory compliance, equity of ac-
cess? UCAS makes this explicit: prediction 
is a governance instrument, not just a data 
science exercise.

The output of this layer is a set of ac-
tionable predictions and recommended in-
terventions, each tied to specific students or 
cohorts, with associated confidence levels 
and rationales.

Governance and orchestration 
layer: Blockchain-enabled 
accountability

The third layer governs how predic-
tions are stored, shared, audited, and acti-
vated across the university. UCAS frames 
this layer as blockchain-enabled for three 
reasons:
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1.	 Data integrity and provenance: 
Storing hashes or state commit-
ments of key analytic outputs 
(e.g., “student X flagged for finan-
cial risk on [date] due to [driver]”) 
on a tamper-evident ledger creates 
an auditable trail. This allows the 
institution to demonstrate that 
interventions were data-driven, 
applied consistently, and not ar-
bitrary or discriminatory. It also 
protects against post hoc manipu-
lation of records for compliance or 
reputational reasons.

2.	 Cross-unit coordination and ac-
cess control: Academic services, 
financial aid, and student success 
offices often operate on different 
systems and under different regu-
latory constraints. Smart contract–
mediated access policies can define 
who is allowed to view or act on 
a given alert, under what condi-
tions, and with what obligations 
to log the response. In UCAS, 
blockchain acts as a governance 
substrate that enforces shared rules 
across organizational silos.

3.	 Intervention orchestration: UCAS 
conceptualizes certain interven-
tions (tuition plan adjustments, 
advisor outreach, eligibility review 
for micro-credentials or modular 
pathways) as triggerable events. 
Smart contracts can be used to 
register these events, require ack-
nowledgment by responsible 
units, timestamp actions taken, 
and record outcomes. This creates 
both traceability (“we acted within 
48 hours of the risk alert”) and the 

possibility of measuring interven-
tion effectiveness over time.

In this sense, the Governance and Or-
chestration Layer is not just about creden-
tial issuance — the dominant use case in 
current blockchain-and-education literatu-
re — but about institutional accountability 
in behavioral decision-making. It translates 
predictive insight into auditable, policy-a-
ligned action.

Flow of insight to action in UCAS

UCAS is designed as a pipeline:

1.	 Data layer to predictive intelligen-
ce layer: The university continuou-
sly aggregates academic, financial, 
and engagement data and cons-
tructs behavioral profiles.

2.	 Predictive intelligence layer to go-
vernance and orchestration Layer: 
AI models generate forecasts (e.g., 
“Student A: 78% probability of 
non-continuation next term, like-
ly driven by cumulative payment 
delays + low LMS activity”). These 
forecasts are written, referenced, 
or anchored in a controlled ledger 
environment that documents both 
the alert and its justification.

3.	 Governance and orchestration 
layer to institutional interven-
tion: Based on pre-defined poli-
cies encoded as smart contracts or 
workflow rules, the relevant unit 
(financial aid office, academic ad-
visor, success coach, program di-
rector) is prompted to intervene. 
The intervention is logged, along 
with timing and type (e.g., “offe-
red revised installment schedule” 
/ “adaptive study plan proposed”).
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Image 1. UCAS: Insight -> Accountable Action
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4.	 Feedback loop: The outcomes of 
interventions (student continues? 
resolves balance? re-engages with 
coursework?) are captured and 
feed back into the Data Layer, im-
proving future model calibration 
and informing policy refinement.

This cyclical flow is central to UCAS, 
prediction without intervention is inert; in-
tervention without auditability is opaque; 
auditability without multi-source data is 
superficial. The model therefore treats data 
fusion, behavioral forecasting, and block-
chain-governed execution as mutually de-
pendent capabilities rather than isolated 
projects.

Theoretical Positioning

Conceptually, UCAS contributes to 
three strands of theory:

•	 Learning analytics and student 
success research: UCAS reframes 
risk analytics from a purely aca-
demic construct (“likelihood of 
failing a course”) to a behavioral-
-economic construct (“likelihood 
of discontinuing the institutio-
nal relationship”), aligning stu-
dent success with institutional 
sustainability.

•	 Data governance and trust in AI-
-mediated decision making: By 
embedding auditability and ac-
cess control into the architecture, 
UCAS positions blockchain as 
more than a credential registry. 
It frames it as an organizational 
trust mechanism that legitimizes 
the use of algorithmic predictions 
in high-stakes decisions affecting 
students.

•	 Strategic management of higher 
education: UCAS conceptualizes 
the university as an integrated deci-
sion system, where academic qua-
lity, financial stability, and service 
personalization are co-optimized 
through predictive analytics. This 
moves beyond the traditional se-
paration between “student affairs,” 
“academic affairs,” and “finance,” 
and instead models the student as 
a shared object of strategic action.

Propositions

To guide empirical examination, the 
UCAS framework implies the following hi-
gh-level propositions:

•	 P1. Universities that integrate aca-
demic, financial, and engagement 
data into a unified behavioral pro-
file will generate more accurate 
and earlier risk forecasts than insti-
tutions relying on academic signals 
alone.

•	 P2. The presence of a blockchain-
-governed orchestration layer in-
creases internal accountability and 
cross-unit coordination in student 
interventions, thereby raising the 
likelihood that predictive insights 
are translated into timely, concrete 
institutional actions.

•	 P3. The effectiveness of UCAS is 
contingent on organizational rea-
diness: without defined interven-
tion workflows and governance 
structures, even high-quality pre-
dictions will not materially impro-
ve retention, progression, or per-
ceived student value.
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These propositions connect the theo-
retical model to evaluation. They also create 
a bridge into the following section (Me-
thodology), where UCAS can be examined 
empirically (through multi-case analysis) 
or validated structurally (through a design 
science approach).

Methodology

This study adopts a design-oriented, 
multi-case qualitative methodology. The 
objective is twofold: (i) to develop and for-
malize the University Consumer Analytics 
Stack (UCAS) as an integrated decision 
architecture for higher education, and (ii) 
to examine to what extent elements of this 
architecture already exist in leading institu-
tions, and how they are being used to in-
form academic, financial, and service deci-
sions about students.

The methodology follows a logic con-
sistent with Design Science Research (DSR) 
in information systems — in which an arti-
fact (here, UCAS) is proposed to address an 
identified organizational problem — com-
bined with comparative multi-case analysis 
to assess the contextual relevance, feasibility, 
and institutional preconditions for that arti-
fact to function in practice.

The section is structured as follows: 
Section 3.1 describes the research design; 
Section 3.2 explains case selection, data 
sources, and data collection procedures; 
Section 3.3 outlines the analysis strategy; 
Section 3.4 discusses validity, reliability, 
and limitations; and Section 3.5 summari-
zes ethical and governance considerations 
relevant to working with student-related 
analytics.

Research design

The research design is anchored in the 
three Research Questions (RQ1–RQ3):

•	 RQ1: How can academic, finan-
cial, and engagement data about 
the student-as-consumer be com-
bined to predict enrollment inten-
tion, continuation likelihood, and 
dropout risk?

•	 RQ2: What role can blockchain 
play in ensuring integrity, trace-
ability, and governance of those 
predictions across academic, fi-
nancial, and administrative units?

•	 RQ3: What organizational capa-
bilities are required for universities 
to operationalize such an integra-
ted AI–blockchain analytics stack?

To address these questions, we proceed 
in two stages:

Artifact development (conceptual de-
sign stage). We synthesize prior literature on 
learning analytics, student retention analy-
tics, financial risk monitoring in higher 
education, and blockchain-based credential 
governance to construct UCAS, an integra-
ted three-layer model (data, predictive in-
telligence, governance/orchestration). This 
corresponds to the classical DSR sequence 
of problem definition to objective specifica-
tion to artifact design.

Contextual evaluation (multi-case sta-
ge). We then analyze multiple higher edu-
cation institutions that have implemented 
advanced analytics, blockchain-enabled 
data governance, or both. The objective is 
not to “test” UCAS in a statistical sense, but 
to (i) map which layers of UCAS are already 
present and how they are instantiated; (ii) 
identify gaps that prevent full institutional 
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integration; and (iii) infer the organizational 
capabilities that enable or block operationa-
lization. This evaluation step corresponds 
to DSR’s relevance cycle and environment 
grounding.

This combined approach is appropria-
te for an area where full, production-level 
integration of AI-driven behavioral fore-
casting with blockchain-governed orches-
tration is still emergent. In such contexts, 
explanatory case logic is more informative 
than controlled experimentation, because it 
reveals institutional constraints, governance 
tensions, and translation frictions between 
prediction and action — all of which are 
central to our research questions.

Case selection and data collection

Case selection logic

We use theoretical sampling rather 
than random sampling. Institutions were 
selected because they exhibit one or more of 
the following characteristics:

1.	 Mature learning analytics / predic-
tive student success systems. The 
institution uses advanced analytics 
to forecast academic performance, 
progression, or dropout at the in-
dividual student level.

2.	 Operational use of behavioral or 
transactional data for decision-
-making. The institution incor-
porates financial, engagement, 
or service-interaction data (e.g., 
tuition payment behavior, advi-
sing interactions, LMS usage) into 
its student risk models, retention 
strategies, or resource allocation.

3.	 Adoption of blockchain for cre-
dentialing, data integrity, or au-
ditability. The institution issues 
verifiable academic credentials 
onchain or uses distributed ledger 
infrastructure to ensure traceabi-
lity of records and/or to support 
compliance and accountability in 
student-related decision processes.

4.	 Evidence of institutional coordi-
nation across academic, financial, 
and administrative units. The ins-
titution has structures (committe-
es, integrated student success offi-
ces, shared governance protocols, 
automated workflows) that trans-
form analytic insight into targeted 
intervention.

Universities that meet at least two of 
these criteria are considered high-value cases 
because they illustrate either partial instan-
tiations of UCAS layers or credible organi-
zational pathways toward full integration.

The resulting sample includes large re-
search-intensive universities, specialized di-
gital or online universities, and institutions 
publicly recognized for early adoption of 
blockchain-enabled credentialing. This di-
versity is intentional: it allows comparison 
across governance models (centralized vs. 
federated), student populations (traditional 
vs. non-traditional / lifelong learners), and 
strategic priorities (academic excellence, re-
tention/revenue stability, credential portabi-
lity, regulatory signaling).

Data sources

Data for each case was drawn from 
multiple convergent sources, including:

•	 Public institutional strategy docu-
ments, digital transformation ro-
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admaps, accreditation self-reports, 
and student success initiatives.

•	 Technical descriptions of analytics 
platforms, retention dashboards, 
enrollment forecasting systems, 
and blockchain credentialing in-
frastructures (when disclosed by 
the institution or its technology 
partners).

•	 Policy documents and governance 
frameworks describing how stu-
dent data, predictive alerts, and 
intervention decisions are sha-
red across academic affairs, stu-
dent success units, and financial 
services.

•	 Speeches, interviews, statements, 
and conference material from 
institutional leadership (e.g., Pro-
vost, CIO, VP for Student Suc-
cess, VP for Enrollment Mana-
gement), in which they explicitly 
describe analytics-driven decision 
processes.

•	 Regulatory and compliance 
communications (e.g., references 
to privacy, bias, auditability, ex-
ternal accreditation requirements, 
and traceability of decisions affec-
ting students).

All documents were collected as pu-
blicly available materials or internal-facin-
g-but-publicly-cited summaries (for instan-
ce, presentations at sector conferences that 
outline analytics architecture or blockchain 
credential pilots). No personally identifiable 
student data or confidential student records 
were accessed. The unit of analysis is institu-
tional practice and governance, not indivi-
dual students.

Data Recording

For each institution, we constructed a 
structured case profile capturing:

•	 Which UCAS layers are present 
(Data, Predictive Intelligence, 
Governance/Orchestration).

•	 Which data types are explicitly 
integrated for decision-making 
(academic, financial, engagement/
service).

•	 Which predictive outcomes are 
targeted (enrollment forecasting, 
dropout risk, payment default, pa-
thway personalization).

•	 Whether blockchain or other le-
dger-like infrastructures are used 
and for what purpose (credential 
issuance, auditability, access con-
trol, workflow orchestration).

•	 How interventions are triggered, 
delivered, and tracked.

•	 What organizational entities are 
responsible for acting on those 
triggers.

These profiles serve as the basis for 
cross-case comparison in Results.

Analysis strategy

The analysis proceeded in three steps.

Step 1: Layer mapping

For each case, we coded the evidence 
to determine which components of UCAS 
were present. For example, if an institution 
uses machine learning to generate individu-
alized dropout-risk alerts that are routed to 
academic advisors, that maps to the Predic-
tive Intelligence Layer plus partial orchestra-
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tion. If an institution issues blockchain-veri-
fiable diplomas but does not use behavioral 
analytics to trigger interventions, that maps 
primarily to the Governance and Orchestra-
tion Layer in its credentialing form.

Step 2: Capability extraction

We then identified the organizatio-
nal capabilities that appeared necessary to 
make each layer operational. These capabi-
lities include data integration infrastructure, 
cross-unit governance bodies, intervention 
protocols, compliance and ethics review 
mechanisms, and mechanisms for accounta-
bility (e.g., audit logs, service-level expecta-
tions for advisor outreach). The goal of this 
step is to answer RQ3: Which capabilities 
are preconditions for deploying UCAS in 
practice?

Step 3: Cross-case comparison 
and proposition refinement

Finally, we compared cases along 
three axes aligned with the theoretical 
propositions:

•	 Depth of data fusion (Are acade-
mic, financial, and engagement 
signals unified at student level?).

•	 Degree of intervention orchestra-
tion (Do predictions lead to coor-
dinated, trackable actions, or are 
they dashboards with no operatio-
nal follow-through?).

•	 Level of auditability and accoun-
tability (Are interventions and de-
cisions traceable, contestable, and 
governed under shared policy, or 
are they ad hoc and opaque?).

This comparative analysis allowed us to 
refine the UCAS propositions, especially P1 

(integration improves predictive value), P2 
(blockchain-enabled governance improves 
accountability and intervention execution), 
and P3 (organizational readiness is a deter-
minant of real impact). Where cases showed 
divergence from UCAS expectations, those 
divergences were used to qualify the model 
and identify constraints.

Validity, reliability, and limitations

Construct validity

We explicitly defined each UCAS layer 
and pre-specified what counted as evidence 
of that layer. This reduces subjective inter-
pretation when coding cases (e.g., “predic-
tive analytics” is not any dashboard; it must 
generate forward-looking, student-level risk 
or intent estimates and inform decisions).

Internal validity

Causal claims are treated cautiously. 
We do not infer that implementing UCAS 
automatically “causes” improved retention 
or financial stability. Instead, we exami-
ne whether institutions that approximate 
UCAS report that predictive insights are 
embedded into repeatable interventions, 
and whether governance infrastructures 
exist to hold units accountable for acting on 
those insights. Causal framing is therefore 
institutional and procedural, not statistical.

Reliability

All case profiles were created using 
the same template and coding logic. When 
similar language (e.g., “personalized lear-
ning,” “student success analytics”) was used 
by different institutions to describe different 
realities, we recoded it according to UCAS 
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definitions rather than institutional marke-
ting language.

External validity / 
generalizability

The cases are not claimed to be re-
presentative of the global higher education 
sector. They are theoretically informative 
(extreme or leading-edge cases) rather than 
statistically sampled. The findings therefo-
re speak to feasibility, architectural patter-
ns, and governance requirements for early 
adopters. They provide propositions that fu-
ture quantitative work can test at scale (e.g., 
linking specific data-integration capabilities 
to observed retention outcomes).

Limitations

The study relies on institutional sel-
freporting, strategic documents, and public 
technical descriptions. We do not directly 
audit internal databases, measure model ac-
curacy in situ, or observe live student inter-
ventions. As a result, some claims made by 
institutions (e.g., on “real-time personaliza-
tion” or “automated early warning”) may re-
flect aspirational or pilot-stage capability ra-
ther than full operational maturity. We treat 
these claims analytically but do not assume 
their full realized impact unless supporting 
procedural evidence is documented.

Ethical, privacy, and governance 
considerations

Because UCAS explicitly connects 
student-level behavioral predictions to insti-
tutional action, ethical and regulatory con-
siderations are inseparable from methodo-
logical rigor. Three principles guided both 
model construction and case analysis:

Data minimization and 
proportionality

The integration of academic, financial, 
and engagement data raises the risk of in-
trusive profiling or discriminatory targeting 
(e.g., treating students from lower-income 
backgrounds as “financial risk” cases). Any 
operationalization of UCAS must include 
explicit proportionality tests: Is the data 
being used necessary and justifiable for the 
stated intervention?

Transparency and 
contestability

If predictive labels (e.g., “likely to drop 
out”) trigger differential treatment, students 
must be able to understand and contest tho-
se classifications. We therefore pay particular 
attention to whether institutions use block-
chain or audit trails to log how and why an 
intervention decision was made, and who 
had access to the triggering information.

Compliance and bias 
governance

Predictive analytics in education can 
reproduce structural bias (e.g., penalizing 
non-traditional learners, working students, 
or students with caregiving responsibilities). 
The Governance and Orchestration Layer in 
UCAS is intentionally specified not only as 
a ledger, but as a mechanism for monitoring 
procedural fairness. In coding each case, we 
examine whether any governance body is 
explicitly responsible for fairness, equity, or 
non-discrimination in the use of predictive 
analytics.

In summary, the methodology com-
bines design science (to articulate UCAS 
as an actionable institutional architecture) 
with comparative case analysis (to evaluate 
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how close real institutions are to that archi-
tecture, and what capabilities are required 
to operationalize it). This approach directly 
supports the research questions by linking 
data integration, predictive intelligence, and 
blockchain-enabled governance to concrete 
patterns of retention strategy, resource allo-
cation, and student-facing intervention.

Design and development 
of a university enrollment 
prediction algorithm

Predicting the number of enrollments 
is essential for a university’s strategic plan-
ning. This includes resource allocation, 
quota definition, academic program offe-
rings, and budgeting. A system based on 
predictive algorithms enables informed de-
cision-making by utilizing historical data to 
identify patterns and trends (Rani, Sachan 
& Kukreja, 2023).

Data collection and preparation

The following sources of information 
can be used to train the algorithm:

•	 Historical enrollment data (Casi-
no et al., 2019).

•	 Demographic characteristics of 
applicants, such as age, gender, 
and geographic location (Sharples 
& Domingue, 2016).

•	 Previous academic records, includ-
ing grade point averages and exam 
scores (Rani, Sachan & Kukreja, 
2023).

•	 External sources, including so-
cioeconomic indicators and labor 
market trends (Tapscott & Tap-
scott, 2016).

It is important to consider how the 
data preparation will be carried out:

1.	 Data cleaning: Remove null, du-
plicate, or inconsistent values to 
improve data quality (Sharples & 
Domingue, 2016).

2.	 Normalization: Scale numerical 
variables to ensure all have equal 
weight during model training (Ca-
sino et al., 2019).

3.	 Categorical variable encoding: 
Convert non-numeric data (such 
as gender or region) into a format 
that the algorithm can process, 
such as One-Hot Encoding (Rani, 
Sachan & Kukreja, 2023).

Finally, selecting the relevant features 
is essential, as not all data are useful. The 
features that contribute most to predicting 
enrollments should be chosen:

•	 Student’s academic history (Casi-
no et al., 2019).

•	 Interaction with digital marketing 
campaigns, such as email clicks 
and time spent on the website 
(Sharples & Domingue, 2016).

•	 Academic programs of interest 
(Rani, Sachan & Kukreja, 2023).

•	 Socioeconomic level and distance 
from the university campus (Taps-
cott & Tapscott, 2016).

This can be done using techniques 
such as variable correlation analysis or fea-
ture importance analysis with models like 
decision trees (Casino et al., 2019).
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Suggested artificial Intelligence 
algorithms for the design and 
development of the prediction 
algorithm

Depending on the available data, dif-
ferent machine learning models can be used 
for prediction. Below are the main options 
that can be applied.

Multiple linear regression

This model is suitable for a simple 
approach that explains how independent 
variables affect the number of enrollments 
(Montgomery et al., 2012). The base equa-
tion is as follows:

y = β0+β1x1+β2x2+⋯+βnxn

Where:

•	 y is the number of enrollments.

•	 x1,x2,...,xn are the predictor 
variables.

•	 β0​ is the intercept.

•	 β1,β2,...,βn are the coefficients asso-
ciated with each variable.

The advantages of using multiple line-
ar regression include its ease of interpreta-
tion for the algorithm user and its ability to 
identify linear relationships between diffe-
rent variables (James et al., 2013). On the 
other hand, a disadvantage is that this mo-
del cannot capture complex patterns in the 
data (Hastie et al., 2009).

Random Forest

A more advanced model than multiple 
linear regression, which combines several 
decision trees to make predictions (Brei-

man, 2001). It is useful for capturing non-
-linear relationships between variables.

The process that can be used would be:

1.	 Create multiple decision trees from 
different subsets of the dataset.

2.	 Average the predictions of the trees 
to obtain the final result.

The advantages of using random fo-
rests include their ability to handle complex 
and non-linear relationships in the data, as 
well as their ability to automatically identify 
the most important variables in the model 
(Liaw & Wiener, 2002). On the other hand, 
a disadvantage is that this model can be 
slower and more costly in terms of compu-
tational implementation (Fernández-Delga-
do et al., 2014).

Neuronal networks

This type of model is especially suita-
ble for problems with large volumes of data 
and highly non-linear relationships (LeCun, 
Bengio & Hinton, 2015). Neural networks 
use multiple layers of interconnected neu-
rons to learn complex patterns in the data.

The suggested architecture would be as 
follows:

•	 Input: Predictor variables such as 
age, region, or academic interest.

•	 Hidden layers: 2-3 hidden layers 
with activation functions like 
ReLU (Rectified Linear Unit) 
(Nair & Hinton, 2010).

•	 Output: A single neuron that re-
turns a continuous value to predict 
the number of enrollments.

Neural networks are more accurate 
than other models due to their ability to an-
alyze complex data and generalize non-obvi-
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ous patterns (Schmidhuber, 2014). Another 
important advantage is their flexibility to 
capture non-linear relationships between 
variables. However, they have disadvantages, 
such as the need for a large and clean dataset 
to train the model adequately (Goodfellow, 
Bengio & Courville, 2016). Additionally, 
their interpretation is more difficult com-
pared to simpler models.

Implementation hypothesis

División de datos Data Division

It is proposed to divide the data into 
three subsets to maximize the efficiency 
of model training (Goodfellow, Bengio & 
Courville, 2016):

•	 Training (70%): To train the 
model.

•	 Validation (15%): To tune 
hyperparameters.

•	 Testing (15%): To evaluate the fi-
nal performance.

Evaluation metrics

The following metrics will be used to 
evaluate the model’s performance (Chollet, 
2017; Goodfellow et al., 2016):

•	 Mean absolute error (MAE):

Image 2. Mean absolute error

•	 Root mean squarre error (RMSE):

Image 3. Root mean squarre error

•	 Coefficient of Determination 
(R2): Measures how well the mo-
del explains the variance of the 
data.

Practical example of using a 
university enrollment prediction 
algorithm

Let’s suppose a university wants to pre-
dict enrollments for the next semester using 
an algorithm.

1.	 Available data:

•	 Number of students who have ap-
plied to the university in the last 
5 years.

•	 Conversion rates (percentage of 
accepted students who enroll).

•	 Advertising campaigns conducted.

•	 Socioeconomic factors of the 
region.

2.	 Model used: The chosen model is 
Random Forest due to its ability 
to handle complex nonlinear rela-
tionships and work with a large set 
of heterogeneous data (Breiman, 
2001).

3.	 Prediction: The algorithm predicts 
that, under current conditions, 
a 5% increase in enrollments is 
expected due to the success of a 
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recent advertising campaign tar-
geting international students. 
This prediction provides valuab-
le information for strategic de-
cision-making, such as resource 
allocation and academic planning 
(Chollet, 2017).

Development of the University 
services personalization algorithm

Personalizing services is key to improv-
ing the student experience at universities 
(Chen et al., 2020). This process involves 
adapting services such as academic pro-
grams, wellness resources, extracurricular 
activities, and communication strategies 
based on students’ preferences and behav-
iors (Xu, 2024). A predictive algorithm 
allows for the analysis of large volumes of 
data to anticipate students’ specific needs, 
increasing their satisfaction and improving 
overall performance (Almalawi et al., 2024).

Data collection and 
preparation process

The main sources of information that 
can be used for the university services per-
sonalization algorithm include:

•	 Academic data:  Enrolled pro-
grams, academic performance, 
attendance level (Kurni, Moham-
med & Srinivasa, 2023).

•	 Demographic Data:  Age, gender, 
place of residence, socioeconomic 
level (Munir et al., 2023).

•	 Digital behavior:  Interactions on 
the educational platform (LMS), 
website searches, email clicks 
(Ngulube & Ncube, 2025).

•	 Declared preferences:  Surveys, 
registration forms, selected extra-
curricular activities (Kazem et al., 
2022).

•	 Service usage:  Participation in 
services such as tutoring, schol-
arships, libraries, sports activities 
(Gkontzis et al., 2019).

To prepare the data, the following steps 
should be followed (Maestre et al., 2023):

•	 Data Cleaning:  Remove duplica-
tes, outliers, and incomplete data.

•	 Normalization and Scaling: Con-
vert all variables to a uniform ran-
ge to prevent some features from 
dominating the model.

•	 Categorical Variable Enco-
ding:  Transform qualitative va-
riables (such as faculty or gender) 
into numerical formats using me-
thods like One-Hot Encoding.

•	 Label Creation:  Group students 
according to similar needs, such 
as high academic risk students or 
highly engaged students (Zhang et 
al., 2021).

Selection of relevant features

To generate this model, it is crucial to 
identify the most important features, which 
may include:

•	 Frequency of digital platform 
use:  Evaluate the time and inter-
action on educational platforms 
(Ngulube & Ncube, 2025).

•	 Grade history:  Analyze previous 
academic performance to predict 
support needs (Kurni, Moham-
med & Srinivasa, 2023).
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•	 Extracurricular activities:  Con-
sider the level of participation in 
activities outside the classroom to 
identify additional interests and 
needs (Kazem et al., 2022).

•	 External factors: Place of residence 
and socioeconomic level as predic-
tors of access to certain resources 
(Munir et al., 2023).

To use these features, the following 
techniques can be applied (Maestre et al., 
2023):

•	 Correlation analysis:  evaluate the 
relationship between variables and 
the desired outcome.

•	 Feature importance analysis:  Use 
models like Random Forests to 
measure the relevance of each va-
riable (Gkontzis et al., 2019).

Suggested predictive AI 
algorithms for university 
services personalization

Various approaches can be used depen-
ding on the data and analysis objectives (Ka-
zem et al., 2022). Below are the main mo-
dels suitable for generating the algorithm.

Model 1: Student Segmentation

K-Means is a clustering algorithm that 
divides students into different groups based 
on common characteristics (Maestre et al., 
2023).

The process can be carried out as 
follows:

1.	 Select the number of groups (k) 
using a method like the elbow 
method (cluster analysis). This 
method is used to determine the 

number of clusters in a dataset 
(Gkontzis et al., 2019).

2.	 Assign each student to the nearest 
group based on their distance to 
the centroids.

3.	 Iteratively readjust the centroids 
until the internal variance of 
the group is minimized (Kurni, 
Mohammed & Srinivasa, 2023).

To apply the process as indicated:

•	 Segment students according to 
profiles: academically lagging stu-
dents, students interested in spe-
cific extracurricular activities, etc. 
(Ngulube & Ncube, 2025).

The advantages of using this method 
are that it is easy to interpret and quick to 
implement, making it ideal for creating per-
sonalized service groups. However, it is sen-
sitive to noisy data and variable scaling.

Model 2: Decision trees and Random 
forests

Decision trees are useful for predicting 
specific services that should be recommen-
ded to a student based on their characteris-
tics (Zhang et al., 2021). Random forests 
combine multiple trees to improve accuracy.

The process can be carried out as 
follows:

1.	 Train the tree with data on stu-
dent characteristics and their past 
choices.

2.	 Evaluate the importance of the 
features to identify which variables 
most influence personalization.

3.	 Use the random forest to reduce 
the risk of overfitting and improve 
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generalization (Almalawi et al., 
2024).

To apply the process as indicated:

•	 Predict which services (tutoring, 
scholarships, activities) are most 
relevant to a student.

The advantages of using this method 
are that it is robust against incomplete or 
noisy data and provides clear explanations 
of which features influence the recommen-
dation (Xu, 2024).

Model 3: Neural Networks

Suitable for complex personalizations 
based on large volumes of data, such as stu-
dents’ digital interactions (Ngulube & Ncu-
be, 2025).

The architecture can be designed as 
follows:

•	 Input layer: Student features (de-
mographics, service usage, digital 
interactions).

•	 Hidden layers: Two or three layers 
with ReLU or Sigmoid activations.

•	 Output layer: Vector with specific 
recommendations (e.g., probabili-
ty of using tutoring services, inter-
est in sports activities, etc.) (Kurni, 
Mohammed & Srinivasa, 2023).

To apply the process as indicated:

•	 Predict multiple needs simulta-
neously (e.g., probability of en-
rolling in specific courses and 
participating in sports activities) 
(Munir et al., 2023).

The advantages of using this architec-
ture are that it is excellent for complex and 
nonlinear data, and it can learn interactions 

between multiple variables. However, this 
architecture requires large amounts of data 
and a longer training time for the predictive 
algorithm (Gkontzis et al., 2019).

Evaluation of the model used

The metrics to evaluate the performan-
ce of the predictive algorithm for university 
services personalization include:

•	 Accuracy:  How well the mo-
del correctly classifies or predicts 
(Brownlee, 2021).

•	 F1 Score:  Balance between pre-
cision and recall (Kazem et al., 
2022).

•	 Confusion Matrix: Evaluate speci-
fic errors in predictions (Zhang et 
al., 2021).

•	 Mean squared error (MSE): In re-
gression models, measures the dif-
ference between predicted and ac-
tual values (Maestre et al., 2023).

Implementation of the 
personalization algorithm

We should follow these steps for im-
plementation, as determined by the process:

1.	 Integration of the model into an 
LMS (Learning Management Sys-
tem): Display personalized recom-
mendations in real-time, such as 
learning resources or events (Chen 
et al., 2020).

2.	 Personalized notifications:  Send 
emails or messages based on the 
algorithm’s predictions (e.g., invi-
tations to activities that align with 
the student’s interests) (Kurni, 
Mohammed & Srinivasa, 2023).



DOI https://doi.org/10.22533/at.ed.8208162614011

A
rt

ic
le

 1
In

te
gr

at
in

g 
pr

ed
ic

tiv
e 

A
I a

nd
 B

lo
ck

ch
ai

n 
fo

r s
tu

de
nt

 b
eh

av
io

ra
l f

or
ec

as
tin

g 
in

 h
ig

he
r e

du
ca

tio
n:

 A
 co

nc
ep

tu
al

 fr
am

ew
or

k 
an

d 
m

ul
tic

as
e 

an
ál

isi
s

21

3.	 Visualization dashboard:  Provide 
reports to administrators on the 
general and specific needs of stu-
dents (Almalawi et al., 2024).

Practical example of using a 
university services personalization 
prediction

A university implements a system ba-
sed on random forests to personalize its ser-
vices (Gkontzis et al., 2019).

•	 Input:  Demographic data, pre-
viously selected activities, and 
LMS usage.

•	 Prediction:  The model indicates 
that 70% of first-year students 
need math tutoring and 30% are 
interested in marketing activities 
(Kazem et al., 2022).

•	 Action:  The university organizes 
tutoring sessions and promotes 
marketing activities among these 
groups.

Development of the academic 
perfomance management 
algorithm

Students’ academic performance is 
one of the key factors in the success of uni-
versities. Predicting academic performance 
allows institutions to identify at-risk stu-
dents, personalize intervention strategies, 
and optimize resources to improve educa-
tional outcomes (Maestre et al., 2023). This 
algorithm is designed to anticipate students’ 
performance based on historical, demogra-
phic, and behavioral data, using machine 
learning techniques and advanced analytics 
(Gkontzis et al., 2019).

Data collection and 
preparation process

The main sources of information that 
can be used for the academic performance 
management algorithm include:

•	 Academic data:  Partial and fi-
nal grades from previous cours-
es, number of courses taken and 
passed, and cumulative weighted 
average (CWA) (Kurni, Moham-
med & Srinivasa, 2023).

•	 Demographic data:  Age, gender, 
socioeconomic level, geographic 
location (Munir et al., 2023).

•	 Learning behavior: Use of educa-
tional platforms (LMS), participa-
tion in tutoring, class attendance 
(Ngulube & Ncube, 2025).

•	 External factors:  Internet connec-
tivity level, part-time employment, 
family environment (Xu, 2024).

To prepare the data, the following steps 
should be followed (Maestre et al., 2023):

•	 Data cleaning:  Remove duplica-
tes, incomplete, or inconsistent 
records.

•	 Variable transformation:  Encode 
categorical variables (e.g., gender) 
using techniques like One-Hot 
Encoding.

•	 Normalization:  Scale numerical 
variables to a uniform range to 
prevent any from dominating the 
calculations.

•	 Label generation:  Classify per-
formance as “high,” “medium,” 
or “low” based on predefined 
thresholds (e.g., CWA > 4.0 = 
“high performance”).
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Selection of relevant features

To select the features, the following te-
chniques can be used:

•	 Correlation analysis:  Identify the 
variables most related to academ-
ic performance (e.g., class atten-
dance, previous grades) (Gevor-
gyan, 2025).

•	 Feature importance:  Use models 
like Random Forests or XGBoost 
to measure the influence of each 
variable on the predictions (Brei-
man, 2001).

Key features typically include:

•	 Previous cumulative average.

•	 Participation in extracurricular 
activities.

•	 Use of LMS platforms (number of 
logins, resources downloaded).

•	 Socioeconomic factors (e.g., fa-
mily income).

Design of predictive algorithms 
for academic performance 
management

Various approaches can be used de-
pending on the data and analysis objectives. 
Below are the main models suitable for ge-
nerating the algorithm.

Model 1: Logistic regression for 
classification

A statistical model that predicts the 
probability of a student belonging to a cate-
gory (e.g., high performance).

The formula that can be used for this 
logistic regression model for classification 
would be the following:

Image 4. Regression model for classification

The application would be to classi-
fy students according to their probability 
of achieving “high” performance in their 
studies.

The advantages of using this model are 
that it is simple to implement and interpret, 
and it is ideal for binary or multiclass pro-
blems (e.g., high, medium, or low perfor-
mance) (Hosmer et al., 2013).

Model 2: Random forests

Random forests combine multiple de-
cision trees to improve accuracy and avoid 
overfitting (Breiman, 2001).

The process to follow would be:

1.	 Train multiple trees on random 
subsets of the data.

2.	 Combine their predictions by vo-
ting to classify or averaging for 
regression.

The application would be to identify 
at-risk students and predict the most in-
fluential variables in performance (Cutler et 
al., 2007).

The advantages of using this model are 
that it is robust against missing or noisy data 
and can identify the relative importance of 
features.
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Modelo 3: Neural networks

The neural network model is an ad-
vanced model capable of identifying com-
plex nonlinear relationships in the data.

The architecture can be designed as 
follows:

•	 Input layer: Student features (pre-
vious grades, attendance, etc.).

•	 Hidden layers: 2 or 3 layers with 
ReLU activations.

•	 Output layer: Performance predic-
tion (probability of belonging to 
each category).

The application of this model would 
be to predict multiple academic performan-
ce metrics with high accuracy (LeCun et al., 
2015).

The advantage of using this method is 
its high performance in complex tasks with 
large volumes of data.

Model training and evaluation

The data will be split as follows:

•	 70% of the data will be used for 
training the model.

•	 30% of the data will be used for 
testing.

The model evaluation metrics will 
include:

•	 Accuracy:  Percentage of correct 
predictions (Gevorgyan, 2025).

•	 Recall and precision: Evaluate the 
balance between false positives and 
negatives.

•	 F1 Score:  Harmonic mean be-
tween precision and recall (Pow-
ers, 2011).

•	 Confusion Matrix:  Visualize cor-
rect and incorrect classifications 
(Sammut & Webb, 2010).

•	 Mean absolute error (MAE):  For 
regression models, measures the 
average magnitude of errors (Will-
mott & Matsuura, 2005).

It is necessary to perform cross-valida-
tion of the data, using K-fold cross-valida-
tion (Refaeilzadeh et al., 2009) to ensure the 
model is robust and generalizes well to new 
data.

Implementation of the 
academic performance 
management algorithm

We should follow these steps for 
implementation:

•	 Integration into a Learning Manage-
ment System (LMS):  The algorithm 
can generate personalized alerts for at-
risk students (Zhang et al., 2021).

•	 Monitoring dashboards: Visualize key 
metrics such as model predictions, in-
fluential variables, and intervention 
rates.

•	 Automated interventions:  Recom-
mend tutoring, additional materials, 
or specific resources to students with 
projected low performance (LeCun et 
al., 2015).

Practical example of using 
academic performance 
management prediction 
algorithm

A university implements a system to 
manage the academic performance of its 
students.
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•	 Input:  A student’s academic history, 
tutoring attendance, LMS usage, and 
demographic data.

•	 Output: The model predicts that the 
student has an 85% probability of 
achieving low performance.

•	 Action:  The university automatically 
assigns personalized tutoring and 
sends notifications about academic 
improvement strategies.

Blockchain: A technology for 
the traceability and security of 
educational data in universities

The rise of emerging technologies, such 
as blockchain and predictive algorithms, of-
fers opportunities to improve educational 
and administrative processes in universities 
(Tapscott & Tapscott, 2016). Blockchain 
technology provides a decentralized, secure, 
and immutable system for managing data 
(Jaime, 2019). Some of its most relevant 
applications in the university context are:

1.	 Management of academic 
credentials:

•	 Issuance of immutable digital degrees, 
certificates, and grades (Jaime, 2020).

•	 Instant and secure verification of cre-
dentials by third parties (employers, 
institutions).

2.	 Management of academic records:

•	 Decentralized recording of student 
data, such as completed courses, atten-
dance, participation in extracurricular 
activities, and achievements (Maestre 
et al., 2023).

3.	 Financial transactions:

•	 Automation of tuition and scholarship 
payments through smart contracts 
(Chen et al., 2018).

4.	 Research traceability:

•	 Ensuring intellectual property and au-
thenticity of university publications 
and projects (Yli-Huumo et al., 2016).

5.	 Management of Digital identities:

•	 Providing each student with a unique 
and verifiable digital identity (Gkont-
zis et al., 2019).

Integration of blockchain 
technology and predictive AI 
algorithms in universities

The combination of blockchain and 
predictive algorithms allows overcoming 
challenges related to the quality, security, 
and privacy of educational data. This inte-
gration ensures that predictive algorithms 
work with accurate and reliable informa-
tion, while respecting privacy and optimi-
zing university processes (Chen et al., 2018).

Management of university 
student data

Blockchain can act as a secure and de-
centralized repository for storing student 
data, such as:

•	 Grades.

•	 Attendance records.

•	 Exam results.

•	 Use of virtual learning platforms 
(LMS).
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The advantages that blockchain te-
chnology brings to predictive algorithms 
include:

1.	 Data integrity: Data stored on blo-
ckchain is immutable, eliminating 
the risk of manipulation or cor-
ruption (Rani, Sachan & Kukreja, 
2023).

2.	 Single source: Algorithms can ac-
cess a reliable data record to make 
accurate predictions (Sharples & 
Domingue, 2016).

3.	 Real-Time updates:  Changes in 
students’ academic progress can be 
reflected on blockchain and im-
mediately used by the algorithms 
(Gkontzis et al., 2019).

One use of blockchain technology 
combined with predictive algorithms would 
be to analyze the academic history stored on 
blockchain to identify patterns suggesting 
a risk of dropout. The university can qui-
ckly intervene with tutoring or support pro-
grams (Alammary et al., 2019).

Personalization of learning

Predictive algorithms analyse student 
data to recommend personalized learning 
strategies. Blockchain technology facilitates 
this personalization using digital student 
identities, which contain relevant informa-
tion such as:

•	 Preferred learning methods.

•	 Resources used on LMS platforms.

•	 Previous assessments.

The operation of such personalized 
learning using predictive algorithms combi-
ned with blockchain technology would be:

1.	 Blockchain stores the student’s 
academic data and preferences.

2.	 Predictive algorithms process this 
data and suggest:

•	 Personalized courses.

•	 Additional resources.

•	 Activities to enhance learning.

The key benefit of combining the-
se two technologies is that personalization 
improves the educational experience and 
fosters better academic performance (Rani, 
Sachan & Kukreja, 2023).

Automation through smart 
contracts

Smart contracts on blockchain allow 
automating processes related to predictive 
interventions, eliminating the need for ma-
nual intervention (Chen et al., 2018).

A practical example of combining 
blockchain technology and predictive algo-
rithms for automation through smart con-
tracts could be as follows:

1.	 A predictive algorithm detects that 
a student is at high risk of dro-
pping out of university.

2.	 A smart contract is automatically 
triggered to:

•	 Notify the student and tutors.

•	 Release resources such as scholarships 
or personalized counseling.

•	 Record the intervention on blockchain 
to ensure traceability.

The impact of combining these two te-
chnologies is that automation ensures inter-
ventions are quick and effective, optimizing 
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university resources (Sharples & Domin-
gue, 2016).

Ethics, privacy and 
transparency

One of the biggest challenges in using 
predictive algorithms is the lack of trans-
parency in the decisions they make. Block-
chain technology can address this issue by 
recording in its system:

•	 The decisions made by the algorithms.

•	 The variables used to make predictions.

The benefits that blockchain techno-
logy combined with predictive algorithms 
could bring include:

•	 Auditability: Students can verify how 
and why decisions were made based on 
predictions (Gkontzis et al., 2019).

•	 Privacy: Blockchain allows students to 
control what data they share with the 
algorithms (Alammary et al., 2019).

•	 Regulatory compliance:  The integra-
tion ensures that universities comply 
with regulations such as GDPR, pro-
tecting sensitive data (Rani, Sachan & 
Kukreja, 2023).

Results. Projects in 
the implementation of 
blockchain technology and 
predictive AI algorithms 
at the university

This section reports the multicase 
analysis by mapping (i) which UCAS layers 
are present in each institution, (ii) how 
multi-source student data are used for pre-
diction and decision-making, and (iii) how 

blockchain is currently deployed for creden-
tial assurance or governance. The analysis is 
interpreted in light of the established lear-
ning-analytics and blockchain-in-education 
literatures, which emphasize individualized 
risk prediction and auditable credential in-
frastructures, respectively (Romero & Ven-
tura, 2020; Alammary et al., 2019; Sharples 
& Domingue, 2016).

Comparative Case Overview

Table 1 summarizes core UCAS-a-
ligned variables per case: integrated data 
sources for prediction, targeted outcomes, 
blockchain deployment focus, degree of au-
tomated orchestration, and primary institu-
tional priority.

Two immediate observations arise. 
First, the most mature multi-source pre-
dictive uses (academic, engagement and 
financial) are found where retention/reve-
nue pressures are explicit (Public Research 
University; Digital-First University), alig-
ning with evidence that combining hetero-
geneous signals improves educational risk 
detection (Zhang et al., 2021; Almalawi et 
al., 2024). Second, blockchain deployments 
cluster around verifiable credentials and 
institutional signaling (e.g., Melbourne’s 
micro-credential pilot), consistent with the 
educational blockchain literature (Universi-
ty of Melbourne, 2017; Sharples & Domin-
gue, 2016). 

Cross case Analysis

Degree of data fusion

A clear gradient appears in data 
integration:
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Institution
Integrated Data 
Sources Used 
for Prediction

Targeted Predictive / 
Decision Outcome

Blockchain De-
ployment Focus

Level of Automat-
ed Orchestration 
/ Smart Contract 
Like Triggers

Primary 
Institutional 
Priority

MIT

Academic perfor-
mance, program 
progression, engage-
ment with digital 
learning platforms; 
limited financial 
behavior integration

Early identification 
of academic risk and 
progression bottlenecks; 
personalized pathway 
recommendations

Verifiable digital 
credentials and 
tamper-evi-
dent records of 
achievement

Low–moderate: 
blockchain mainly 
for credential 
issuance; inter-
vention workflows 
largely manual

Academic 
excellence, 
signaling of 
credential trust 
and portability

Stanford 
University

Academic metrics, 
LMS engagement 
data, advising 
interactions, sup-
port service usage; 
emerging attention 
to well-being / 
support-seek-
ing patterns

Dropout / stop out 
risk, time to degree 
optimization, allocation 
of advising resources

Exploratory work 
on secure data 
sharing and audit-
ability rather than 
large-scale cre-
dential issuance

Moderate: alerts 
routed to advising/
success offices; 
escalation proto-
cols semi-formal

Student success 
and reten-
tion, advisor 
efficiency

University 
of Nicosia

Enrollment 
behavior, program 
selection decisions, 
payment timing, 
interaction with 
decentralized 
learning platforms

Enrollment conversion, 
payment reliability, 
pathway personalization 
for specialized block-
chain/crypto programs

Full blockchain 
credentialing; 
on-chain proof 
of completion; 
emphasis on 
student-owned 
records

Moderate–high: 
smart-contract 
logic for creden-
tial issuance and 
verification is 
institutionalized

Credential 
portability, 
global signaling, 
revenue through 
specializa-
tion niches

University of 
Melbourne

Academic progress, 
micro-credential 
uptake, continuing 
education behavior, 
career services 
engagement

Lifelong learning 
pathway modeling, mi-
cro-credential stacking, 
learner re-engagement 
after graduation

Block-
chain-backed / 
ledger-backed dig-
ital certificates for 
micro-credentials 
and short courses

Moderate: partial 
automation of 
issuing recog-
nized credentials; 
limited automa-
tion of retention 
interventions

Lifelong learner 
re-engagement 
and brand 
reputation

Public 
Research 
University

Academic perfor-
mance, attendance 
patterns, tuition 
payment behavior, 
missed deadlines, 
financial aid usage, 
LMS disengage-
ment signals

Early dropout risk 
prediction, proactive 
retention outreach, 
targeted financial 
intervention (e.g., 
revised payment plans)

No production 
blockchain; gov-
ernance handled 
through internal 
compliance/
audit offices

High for analytics 
triggers: risk alerts 
auto-generate 
advisor outreach 
tasks and financial 
aid review

Retention and 
revenue stability

Digital-First 
University

Clickstream 
data from online 
platforms, pacing 
in selfdirected 
modules, pay-
ment installment 
behavior, support 
ticket history

Continuation prob-
ability per module, 
churn prediction 
between modules, 
upsell to next certificate 
/ specialization track

Blockchain 
primarily for 
portable verifiable 
certificates and 
proof of skills for 
employability

Moderate–high: 
intervention work-
flows partially 
automated (pay-
ment plan offers, 
outreach nudges)

Scalable 
personalization 
and conversion 
efficiency

Table 1. Cross case comparison of UCAS relevant capabilities
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•	 High fusion of academic + finan-
cial + engagement data. Public Re-
search University and Digital-First 
University fuse tuition/payment 
timing, LMS inactivity, missed ad-
ministrative steps, and performan-
ce indicators into individualized 
alerts that trigger retention and 
financial-aid actions—a pattern 
consistent with best-practice ear-
ly-warning models (Zhang et al., 
2021; Romero & Ventura, 2020).

•	 Academic/engagement integration 
with limited financial variables. 
Stanford and MIT emphasize pro-
gression modeling and personali-
zation but treat financial/adminis-
trative signals in separate systems, 
a siloing commonly noted in im-
plementations preceding full data 
governance alignment (Alammary 
et al., 2019). 

•	 Consumer-behavior orientation. 
The University of Nicosia tracks 
program choices and payment 
behavior as market signals for pa-
thway personalization and conver-
sion—an approach coherent with 
blockchain-credential ecosystems 
aimed at student-owned records 
and portability (Sharples & Do-
mingue, 2016). 

•	 Lifelong-learner horizon. Mel-
bourne focuses on stackable mi-
cro-credentials and re-engagement 
over time, leveraging credential 
portability to shape long-term le-
arner trajectories (University of 
Melbourne, 2017). 

•	 Predictive intelligence and 
intervention logic

All institutions deploy predictive/ear-
ly-warning logic, but for distinct managerial 
purposes:

•	 Retention and risk mitigation. Pu-
blic Research University and Stan-
ford route alerts to advising/tu-
toring/financial-aid with defined 
service expectations—consistent 
with literature linking predicti-
ve alerts to operational student-
-success workflows (Zhang et al., 
2021). 

•	 Pathway steering and demand 
shaping. MIT and Digital-First 
University use prediction to re-
commend feasible pathways and 
progression, a use aligned with 
program-design and resource-allo-
cation perspectives in learning 
analytics (Romero & Ventura, 
2020). 

•	 Product/portfolio strategy. Mel-
bourne and Nicosia analyze which 
credential formats drive persisten-
ce and perceived value, resonating 
with blockchain-enabled micro-
-credential ecosystems (University 
of Melbourne, 2017; Alammary et 
al., 2019).

Blockchain as Governance 
and Orchestration Layer

Across cases, blockchain is most mature 
in credential integrity and portability—e.g., 
verifiable certificates and micro-creden-
tials—rather than in internal orchestration 
of predictive interventions. This pattern 
mirrors the broader field’s current emphasis 
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(Sharples & Domingue, 2016; Alammary et 
al., 2019).

Selective signs of internal auditability 
appear (timestamped actions, immutable 
logs), but smart-contract-driven cross-unit 
triggers remain rare in production. Where 
automation exists (e.g., outreach/job tickets, 
payment-plan offers), it is typically CRM-
-based rather than ledger-governed, despite 
the potential of smart contracts to encode 
rules and reduce discretion (Casino et al., 
2019; Chen et al., 2018). 

Organizational capabilities

Three recurrent enablers distinguish 
operational from pilot-level practice:

•	 Cross-unit data governance bodies 
that align enrollment management, 
academic affairs, student success, 
and finance—turning analytics from 
dashboards into task assignment (Ro-
mero & Ventura, 2020). 

•	 Defined escalation protocols for ad-
visor outreach and documentation, 
which are prerequisites for any move 
toward verifiable, auditable interven-
tion workflows (Casino et al., 2019). 

•	 Executive framing of analytics as stra-
tegy, especially in micro-credential 
ecosystems that depend on verifiable 
records and external trust (University 
of Melbourne, 2017; Sharples & Do-
mingue, 2016).

Key Findings

Finding 1. Partial UCAS implementa-
tions are common; full end-to-end integra-
tion is not yet observed.

Institutions tend to be strong in one or 
two layers (e.g., predictive + workflows; or 
credential blockchain) but do not yet con-
nect predictive outputs to a blockchain-go-
verned intervention layer. This reflects the 
current state of the field (Sharples & Do-
mingue, 2016; Alammary et al., 2019).

Finding 2. High-performing predicti-
ve use cases treat students as both learners 
and consumers, integrating financial and 
engagement signals with academics.

Where tuition/payment and engage-
ment signals are fused with academic indi-
cators, institutions report earlier and more 
actionable risk detection, consistent with 
empirical reviews (Zhang et al., 2021; Al-
malawi et al., 2024).

Finding 3. Blockchain is currently le-
veraged primarily for external trust (verifia-
ble credentials), not yet for internal accoun-
tability of data-driven interventions.

Credential assurance is production-
-ready; orchestration via smart contracts re-
mains emergent (University of Melbourne, 
2017; Sharples & Domingue, 2016; Casino 
et al., 2019).

Finding 4. Formalized intervention 
workflows convert predictive alerts into ma-
nagerial infrastructure.

Defined service-level expectations 
(who acts, when, how logged) are the deci-
sive step from pilots to operations, aligning 
with implementation guidance in the lear-
ning-analytics literature (Romero & Ventu-
ra, 2020). 

Finding 5. Organizational capabi-
lity is the principal bottleneck to UCAS 
realization.

AI methods and even blockchain pi-
lots are available, but without cross-unit go-
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vernance and auditable workflows, predicti-
ve insights remain siloed (Chen et al., 2018; 
Casino et al., 2019). 

Discussion. Future research 
on university consumer 
behavior combining 
predictive algorithms and 
blockchain technology

The combination of predictive algori-
thms and blockchain not only transforms 
the current experience but also creates new 
opportunities for the future:

1.	 Competency based education: 
Blockchain can store micro-cre-
dentials obtained in specific cou-
rses, allowing students to demons-
trate acquired skills in a granular 
manner (González and Fernández, 
2022).

2.	 Educational marketplace: With 
blockchain, universities could cre-
ate decentralized platforms where 
students select courses, professors, 
and specific resources according to 
their needs, democratizing educa-
tion (Maestre et al., 2023).

3.	 Holistic predictions: As algori-
thms are fed more data (academic, 
social, financial), predictions will 
become more accurate, enabling 
increasingly effective intervention 
strategies (Maestre et al., 2023).

4.	 Expansion of decentralized educa-
tional networks: More universities 
could join global blockchain ne-
tworks, creating an interoperable 
educational ecosystem (Xu, 2024).

5.	 Universal portable credentials: Stu-
dents will be able to easily transfer 
their academic records between 
institutions without administrati-
ve barriers (Mata & Cruz, 2022).

6.	 Micro credentials: Blockchain will 
allow the issuance of certificates 
for specific courses or acquired 
skills, promoting continuous lear-
ning (Maestre et al., 2023).

 Conclusions

The integration of predictive algo-
rithms and blockchain technology in the 
university environment not only transforms 
how institutions manage their internal pro-
cesses but also redefines the experience of 
the university consumer, i.e., the students. 
These technological tools offer advanced so-
lutions to personalize, predict, and optimize 
interactions between students and universi-
ties. Below are key conclusions derived from 
the analysis of their applications and bene-
fits, accompanied by relevant references.

Transformation in the educational 
experience of the University 
consumer

Personalization of learning

Predictive algorithms allow the iden-
tification of patterns in student behavior 
through the analysis of large volumes of 
data, such as:

•	 Participation in classes and digital 
platforms.

•	 Grades.

•	 Learning preferences. This leads to 
the creation of personalized educa-
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tional experiences, tailored to the 
individual needs of each student.

The impact has been that personaliza-
tion improves student satisfaction and enga-
gement, significantly reducing the universi-
ty dropout rate.

Evidence according to Romero and 
Ventura (2020), the use of predictive mo-
dels in education improves academic per-
formance and increases motivation by pro-
viding tailored recommendations.

Improvement in student 
decisión - making

By offering predictions about student 
performance and possible academic trajec-
tories, students can make more informed 
decisions about courses, specializations, and 
career goals.

The impact has been that improved 
student decision-making positions univer-
sities as proactive agents in their students’ 
success, increasing their confidence in the 
institution.

Reduction of student dropout 
through early risk identification

Predictive algorithms can detect signs 
of potential student dropout, such as:

•	 Lack of engagement in academic 
activities.

•	 Poor academic performance.

•	 Economic or personal problems re-
flected in external data.

The impact has been that by imple-
menting intervention strategies based on 
these models, universities can offer persona-
lized tutoring, financial support, and coun-
seling to at-risk students.

Evidence from Zhang et al. (2020) ob-
served a 25% reduction in dropout rates at 
universities that employed predictive analy-
tics to develop support programs.

Trust and transparency through 
blockchain technology

Secure and transparent 
dredential management

Blockchain technology allows the re-
cording of academic credentials such as de-
grees, certificates, and student achievements 
on an immutable network. This eliminates 
forgery and facilitates verification by em-
ployers. The impact has been that students 
have greater control over their data, which 
builds trust in institutions. Evidence from 
Sharples and Domingue (2016) highlights 
that blockchain significantly improves trust 
in academic management systems.

Protection of personal data

Blockchain technology, being decen-
tralized, ensures that students can decide 
who has access to their data and under what 
conditions, complying with regulations 
such as GDPR. The impact has been the 
empowerment of the university consumer 
and strengthens the trust relationship be-
tween students and universities.

Operational efficiency and 
automation

Smart Contracts

Smart contracts automate administra-
tive processes such as:

•	 Enrollments.
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•	 Scholarship assignments.

•	 Issuance of certificates.

The impact has been that operation-
al efficiency increases, allowing universities 
to allocate more resources to learning and 
innovation.

Resource optimization

By combining blockchain technology 
with predictive algorithms, universities can 
foresee future demands, such as tutor assign-
ments or course planning. The impact has 
been cost reduction and improved educa-
tional experience. Evidence from Casino et 
al. (2019) concludes that blockchain-based 
automation is key to reducing bureaucracy 
in the education sector.
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