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RESUMO: O Sensoriamento Remoto (SR) é uma geotecnologia que permite a 
implantação de práticas sustentáveis na agricultura, pois é um método não destrutivo 
que possibilita o monitoramento da variabilidade temporal e espacial de cultivos 
agrícolas, auxiliando na tomada de decisões mais assertivas e rápidas. Partindo 
desse pressuposto, nosso estudo investigou como a densidade de semeadura afeta 
a produtividade da soja por meio do monitoramento espectral do cultivo, utilizando 
o sensoriamento remoto proximal (SRP). O objetivo deste trabalho foi estimar a 
produtividade da soja em função da densidade de semeadura e identificar a melhor 
época de avaliação utilizando os índices de vegetação. O trabalho foi realizado em 
área experimental da Universidade Tecnológica Federal do Paraná (UTFPR), Campus 
Santa Helena, no Estado do Paraná. O delineamento experimental foi inteiramente 
casualizado em faixas, composto por dois tratamentos, sendo duas densidades de 
semeadura (21,2 e 22,5 sementes m⁻¹), e quatro repetições. As variáveis analisadas 
foram índices de vegetação (NDVI - Normalized Difference Vegetation Index e 
NDRE - Normalized Difference Red Edge Index) e produtividade. As épocas avaliadas 
para os índices de vegetação foram aos 36, 69, 76, 85 e 92 dias após a semeadura 
(DAS). A produtividade foi avaliada apenas no final do ciclo da cultura, quando a 
soja atingiu o estádio de maturação fisiológica. As análises estatísticas incluíram 
boxplot, coeficiente de correlação de Pearson e regressão de modelo polinomial 
para a estimativa da produtividade, utilizando o coeficiente de determinação 
(R²) como parâmetro de precisão. Concluiu-se que o NDRE apresentou melhores 
resultados para a estimativa da produtividade em relação ao NDVI, que apresentou 
problemas de saturação. O problema de saturação do NDVI é amplamente descrito 
na literatura como a perda de sensibilidade do índice em áreas com alta biomassa 
ou dossel muito fechado, situação em que o NDVI atinge um platô e deixa de 
diferenciar variações reais no vigor da vegetação. Para a densidade de semeadura 
de 21,2 sementes m⁻¹, as melhores épocas para a estimativa da produtividade foram 
aos 76 e 92 DAS. Para a densidade de semeadura de 22,5 sementes m⁻¹, as melhores 
épocas foram aos 85 e 92 DAS. 
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PALAVRAS-CHAVE:  agricultura de precisão, Glycine max (L) Merril, sensoriamento 
remoto, sensor óptico ativo, agricultura sustentável. 

Estimation of soybean productivity through proximal remote 
sensing using the NDVI and NDRE vegetation indices.

ABSTRACT: Remote sensing (RS) is a valuable geotechnological tool that facilitates 
the implementation of sustainable agricultural practices. As a non-destructive 
method, it allows for the monitoring of temporal and spatial variability in crops, 
enabling more informed and timely decision-making. Based on this premise, our 
study explored how sowing density impacts soybean productivity through spectral 
monitoring of the crop, utilizing proximal remote sensing (PRS). The objective was 
to estimate soybean productivity as a function of sowing density and to identify the 
optimal times for evaluation using vegetation indices. This research was conducted 
in an experimental area at the Federal Technological University of Paraná (UTFPR), 
Santa Helena Campus, in the state of Paraná. The experimental design was completely 
randomized in strips, consisting of two treatments, two sowing densities (21.2 and 
22.5 seeds m⁻¹), and four replicates. The variables analyzed were vegetation indices 
(NDVI - Normalized Difference Vegetation Index and NDRE - Normalized Difference 
Red Edge Index) and productivity. The periods evaluated for vegetation indices were 
36, 69, 76, 85, and 92 days after sowing (DAS). Productivity was evaluated only at 
the end of the crop cycle, when soybeans reached physiological maturity. Statistical 
analyses included boxplots, Pearson’s correlation coefficient, and polynomial model 
regression to estimate yield, using the coefficient of determination (R²) as a measure 
of accuracy. The analysis concluded that the NDRE provided better results for yield 
estimation compared to the NDVI, which exhibited issues with saturation. For a 
sowing density of 21.2 seeds per meter, the optimal times for estimating productivity 
were at 76 and 92 DAS. In contrast, for a sowing density of 22.5 seeds per meter, 
the best times for estimation were at 85 and 92 DAS.

KEYWORDS: sustainable agriculture, precision agriculture, Glycine max (L.) Merril, 
remote sensing, active optical sensor.

INTRODUÇÃO
O complexo agroindustrial da soja é de extrema importância para o Brasil, pois 

envolve uma ampla gama de pessoas e organizações ligadas a diversos setores 
socioeconômicos (HIRAKURI, 2024). Segundo Conab (2024) os dados apontam 
uma diminuição de 4,7% na produção quando comparada à safra de 2022/2023, 
redução essa atribuída principalmente a fatores climáticos. De acordo com a USDA 
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(2024) a produção global de soja está estimada em 376,11 milhões de toneladas, 
destacando a grande relevância desse grão. 

A produtividade dos cultivos agrícolas de soja é influenciada por uma combinação 
de fatores ambientais, agronômicos, econômicos e tecnológicos. O clima, a qualidade 
do solo e a presença de insetos-praga e doenças desempenham papéis cruciais 
no desenvolvimento das plantas de soja (FERREIRA, 2021). Além disso, práticas 
agronômicas como a rotação de culturas e a escolha de cultivares adaptadas às 
condições locais são fundamentais para aumentar a resiliência da soja contra 
estresses ambientais e biológicos (SILVA, 2020).

 Nesse contexto, a Agricultura de Precisão (AP) se destaca como uma abordagem 
de gestão agrícola que utiliza geotecnologias, como o Sistema Global de Navegação 
por Satélite (GNSS), Sensoriamento Remoto (SR), Sistemas de Informação Geográfica 
(SIG) e análise de dados, para monitorar e otimizar o uso de insumos agrícolas, 
aumentando a produtividade e a sustentabilidade (JONES, 2021). A AP permite 
a aplicação eficiente de fertilizantes e produtos fitossanitários, reduzindo custos 
e impactos ambientais, além de melhorar a gestão do solo e da água (BROWN, 
2020). Tecnologias como sensores de umidade do solo, Aeronaves Remotamente 
Pilotadas (ARPs) utilizadas no monitoramento de patógenos e insetos-praga, bem 
como modelos preditivos aplicados à detecção de doenças, possibilitam intervenções 
mais eficientes e localizadas, contribuindo para a mitigação dos fatores que afetam 
negativamente a produtividade da soja (MARTINEZ, 2023).

 A AP é crucial para promover a agricultura sustentável e alcançar vários Objetivos 
de Desenvolvimento Sustentável (ODS) da ONU, como Fome Zero e Agricultura 
Sustentável (ODS 2), Água Potável e Saneamento (ODS 6), Consumo e Produção 
Responsáveis (ODS 12), Ação Contra a Mudança Global do Clima (ODS 13) e Vida 
Terrestre (ODS 15). Ao utilizar geotecnologias avançadas, a AP otimiza o uso de 
insumos agrícolas, melhora a gestão dos recursos hídricos e do solo, reduzindo 
desperdícios e impactos ambientais, o que resulta em maior produtividade e 
sustentabilidade das práticas agrícolas (JONES, 2021; BROWN, 2020; MARTINEZ, 
2023; SMITH, 2022).

 Dentre as geotecnologias utilizadas na AP, o SR vem sendo amplamente 
empregado, permitindo a coleta e análise de dados em nível orbital, aéreo e terrestre, 
o que facilita o monitoramento eficiente das áreas agrícolas (MOLIN et al., 2015; 
CARNEIRO et al., 2024). Essa geotecnologia oferece vários benefícios para a agricultura 
sustentável, incluindo o monitoramento contínuo dos cultivos agrícolas, a gestão 
eficiente da água e a análise da qualidade do solo, promovendo a aplicação eficiente 
de insumos e minimizando impactos ambientais (ZHANG, 2019; LOBELL, 2020). 
Além disso, o SR auxilia na previsão de safra e de eventos climáticos extremos, 
permitindo que os agricultores tomem decisões mais assertivas (SHIRATSUCHI, 
2021; WANG, 2019). 
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Em SR, utilizam-se os índices de vegetação (IVs), que permitem o monitoramento 
espaço-temporal das culturas. Entre os IVs, o NDVI (Normalized Difference Vegetation 
Index) é amplamente utilizado para estimar o desenvolvimento da vegetação, 
sendo calculado a partir de dados de reflectância na região do vermelho (RED) e 
do infravermelho próximo (NIR) (ROUSE, 1974; TUCKER 1979). O NDRE (Normalized 
Difference Red Edge Index) é semelhante ao NDVI, mas utiliza a região da borda 
vermelha (Red Edge), sensível à clorofila e à estrutura da folha, sendo calculado a 
partir da reflectância no infravermelho próximo (NIR) e na borda vermelha (RE) 
(TUCKER, 1979; GITELSON, 2004a). 

A escolha do Extremo Oeste do Paraná como área de investigação se justifica 
pela relevância agropecuária da região e por suas características edafoclimáticas 
singulares, que influenciam diretamente o desempenho da cultura da soja. Essa região 
está inserida no bioma Mata Atlântica e apresenta predominância de Latossolos 
Vermelhos eutroférricos, solos profundos e bem drenados, mas que demandam 
manejo criterioso da fertilidade, especialmente quanto ao equilíbrio entre macro 
e micronutrientes (SANTOS et al., 2018). Além disso, o Extremo Oeste situa-se em 
uma zona de transição climática com regime Cfa subtropical úmido, caracterizado 
por verões quentes, alta variabilidade de chuvas e ocorrência de eventos extremos, 
como estiagens sazonais e períodos de excesso hídrico, que podem comprometer 
a definição da população final de plantas e, consequentemente, a produtividade 
da soja (CAVIGLIONE et al., 2000). 

Partindo desse pressuposto, formulou-se a hipótese de que a densidade 
de semeadura influencia diretamente a produtividade da cultura da soja. O 
desenvolvimento deste estudo justificou-se pela necessidade de identificar a 
densidade de semeadura mais adequada às condições edafoclimáticas da região 
do Extremo Oeste do Estado do Paraná, bem como de avaliar a viabilidade do uso 
do SRP na estimativa da produtividade dessa cultura.

Além disso, a análise realizada demonstrou que o ajuste preciso da densidade 
de semeadura exerce influência significativa sobre o aumento da produtividade 
agrícola. Essa abordagem busca oferecer aos produtores rurais ferramentas mais 
eficazes para otimizar o uso de insumos, reduzir custos operacionais e adotar práticas 
agrícolas mais sustentáveis, fortalecendo a segurança alimentar e promovendo o 
uso responsável dos recursos naturais.

Diante do exposto, os objetivos deste trabalho foram: (i) monitorar o 
comportamento espectral temporal da cultura da soja no município de Santa 
Helena, região do Extremo Oeste do Paraná, utilizando os índices de vegetação 
NDVI e NDRE para caracterizar as respostas da cultura às condições edafoclimáticas 
locais. e (ii) estimar a produtividade da soja em função da densidade de semeadura, 
identificando a melhor época de avaliação utilizando os índices de vegetação NDVI 
e NDRE.



16

CA
PÍ

TU
LO

 2
ES

TI
M

AT
IV

A
 D

A
 P

RO
D

U
TI

VI
D

A
D

E 
D

A
 S

O
JA

 P
O

R 
M

EI
O

 D
O

 S
EN

SO
RI

A
M

EN
TO

 R
EM

O
TO

 P
RO

XI
M

A
L 

PO
R 

M
EI

O
 D

O
S 

ÍN
D

IC
ES

 D
E 

VE
G

ET
A

ÇÃ
O

 N
D

VI
 E

 N
D

RE

MATERIAL E MÉTODOS

Descrição da área experimental
O trabalho foi conduzido na área experimental da Universidade Tecnológica 

Federal do Paraná (UTFPR), campus Santa Helena, situada nas coordenadas geográficas 
24°50’57,70” S e 54°20’46,23” O, no município de Santa Helena, região Oeste do 
Estado do Paraná, conforme ilustrado na Figura 1. De acordo com a classificação 
brasileira de solos, a área é composta por Nitossolo vermelho eutroférrico (Bdia, 2019). 
O clima local é classificado como subtropical úmido (Cfa), segundo a classificação 
climática de Köppen (ALVARES et al., 2013). A pluviosidade média da safra 23/24, 
conforme dados do INMET (2023/2024), é de 65,4 mm a 298,8 mm, sendo que a 
Figura 2 apresenta a distribuição média mensal dessa precipitação.

Figura 1. Mapa de localização do município de Santa Helena, onde 
está situada a Universidade Tecnológica Federal do Paraná, local 

onde o experimento foi conduzido, no Estado do Paraná. 

Fonte: Autores (2023)
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Figura 2. Representação pluviosidade durante a safra 2023/2024.

Fonte: INMET (2025)

Delineamento experimental
O experimento foi delineado em um esquema Inteiramente Casualizado (DIC) 

em faixas contínua, com dois tratamentos e quatro repetições. Os tratamentos 
(Tabela 1) consistiram em duas densidades de semeadura (21,2 e 22,5 sementes por 
metro), totalizando oito parcelas. Cada parcela foi dimensionada com 50 metros 
de comprimento e 15 metros de largura (Figura 3).

Tratamento Densidade de semeadura
(semente por m²)

1 21,2

2 22,5

3 21,2

4 22,5

Tabela 1. Tratamentos utilizados no experimento

Fonte: Autoria Própria (2025)
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Figura 3. Representação esquemática do delineamento 
experimental adotado neste estudo.

Fonte: Autores (2025)

Equipamentos agrícolas
Durante o experimento, a semeadura foi realizada utilizando a cultivar de 

soja 621, de acordo com os tratamentos previamente estabelecidos, os quais 
consistiram em duas densidades de semeadura (21,2 e 22,5 sementes por metro). 
As densidades foram definidas com base em uma discussão técnica, conduzida 
por meio de brainstorming pela equipe, com o objetivo de avaliar o impacto de 
uma população elevada de plantas, associada a uma data de semeadura tardia e à 
ocorrência de déficit hídrico, sobre a produtividade e o comportamento espectral 
da cultura da soja.

A operação foi conduzida com o uso de um conjunto mecanizado composto 
por trator e semeadora-adubadora mecânica. O trator empregado foi o modelo 
LS Plus 90 (Figura 4a) com potência do motor de 93 cavalos (cv), acoplado a uma 
semeadora-adubadora mecânica (Figura 4b) de sete linhas, com espaçamento de 
0,5 m entre linhas. A colheita foi conduzida de forma semimecanizada: o corte das 
plantas será realizado manualmente, enquanto a trilha e a separação dos grãos 
serão efetuadas por meio de uma trilhadora de arrasto (Figura 9c), modelo B-340 
(Figura 4c) acoplada ao trator LS Plus 90.
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(a) (b)

(c)

Figura 4. Equipamentos agrícolas empregados nas operações de semeadura e 
colheita semimecanizada: (a) trator; (b) semeadora-adubadora; (c)trilhadora. 

Fonte: Autoria Própria (2025)

Aquisição de Dados 
As variáveis avaliadas no experimento foram a produtividade da soja e os índices 

de vegetação NDVI e NDRE. A produtividade foi mensurada em uma única data, 
correspondente ao estádio de maturação fisiológica da cultura. Após a colheita, 
as amostras de cada tratamento foram encaminhadas ao laboratório da UTFPR, 
campus Santa Helena, onde foram determinados o teor de água dos grãos e a 
massa total colhida. Posteriormente, os valores de produtividade foram corrigidos 
para um teor de água de 13% e convertidos para produtividade por área, expressa 
em quilogramas por hectare (kg ha⁻¹).
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Os índices de vegetação NDVI e NDRE foram obtidos por meio do sensor óptico 
ativo, modelo CS-45 (Figura 5). Este equipamento permitiu a realização de medições 
espectrais diretamente em campo, fornecendo dados em tempo real com elevada 
precisão, sendo amplamente empregado na AP (MADEIRA NETTO; SOUSA; CRUZ, 
2019). O monitoramento temporal do comportamento espectral da cultura da soja 
foi conduzido utilizando esse sensor, com coletas realizadas em cinco momentos 
distintos ao longo do ciclo da cultura: 36, 69, 76, 85 e 92 dias após a semeadura (DAS), 
correspondendo, respectivamente, às datas 1, 2, 3, 4 e 5. As fórmulas utilizadas para 
o cálculo dos índices de vegetação encontram-se descritas na Tabela 2.

Figura 5. Equipamento utilizado para o sensoriamento remoto proximal, 
realizado por meio do sensor óptico ativo, modelo CS-45.

Fonte: Autoria Própria (2025)

Índice de Vegetação* Equações** Fonte

NDVI Rouse Jr. et al. (1974)

NDRE
Buschmann and Nagel (1993)

*NDVI - Normalized Difference Vegetation Index, NDRE - Normalized Difference 
Red Edge Index). **NIR: Infravermelho-próximo, Red edge: borda do Vermelho

Tabela 2. Índices de Vegetação utilizados no experimento 
por meio de sensoriamento remoto proximal. 
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Análises estatísticas
As análises estatísticas foram realizadas por meio de boxplots, do cálculo do 

coeficiente de correlação de Pearson e da aplicação de modelos de regressão 
polinomial, com o objetivo de estimar a produtividade a partir dos parâmetros 
biofísicos da cultura da soja. As etapas de tabulação e análise inicial dos dados foram 
conduzidas no Microsoft Excel. A análise de correlação, utilizando o coeficiente 
de correlação de Pearson, foi realizada no ambiente virtual Google Colaboratory 
(https://colab.google/), empregando a linguagem de programação Python. A 
acurácia dos modelos foi avaliada por meio do coeficiente de determinação (R²), 
conforme apresentado na Equação 1.

(1)

Em que:

yi : valores observados; 

: valores estimados; 

N: número de amostras; 

 : média aritmética simples dos valores observados.

RESULTADOS E DISCUSSÃO
De modo geral, a Figura 6 ilustra o monitoramento do comportamento espectral 

da cultura da soja por meio do boxplot, permitindo identificar a variabilidade das 
leituras nas cinco datas avaliadas (36, 69, 76, 85 e 92 DAS) para os índices de vegetação 
NDVI e NDRE. Observa-se que ambos os índices apresentaram padrões dinâmicos ao 
longo do ciclo da cultura, refletindo as mudanças estruturais, fisiológicas e bioquímicas 
da vegetação, conforme amplamente descrito na literatura de sensoriamento remoto 
aplicado à agricultura (ZHANG et al., 2019; LOBELL et al., 2020).

O NDVI e o NDRE exibiram comportamentos distintos dependendo do estádio 
fenológico da planta, com algumas épocas demonstrando maior variabilidade e outras 
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menor. Essa diferença é esperada, uma vez que o NDVI responde majoritariamente 
ao acúmulo de área foliar e biomassa verde, enquanto o NDRE é mais sensível às 
variações de clorofila e estrutura interna da folha, sobretudo em estádios mais 
avançados (GITELSON et al., 2004; HORLER et al., 1983).

Figura 6. Monitoramento da variabilidade temporal dos índices de vegetação NDVI 
(Normalized Difference Vegetation Index) e NDRE (Normalized Difference Red Edge Index) 
em função das épocas de avaliação (1-36; 2-69; 3-76; 4-85 e 5-92 dias após a semeadura).

Fonte: Autores (2025)

Aos 36 DAS, verificou-se menor variabilidade nas leituras de ambos os índices. 
Esse comportamento está associado à baixa cobertura vegetal típica dos estádios 
iniciais, quando grande parte da reflectância registrada ainda sofre influência direta 
do solo exposto, situação amplamente reportada em estudos com soja e cereais 
(POVH et al., 2008; VINA et al., 2011).  

Essa condição limita a capacidade dos índices de vegetação em discriminar 
variações entre tratamentos, uma vez que a vegetação ainda não domina o pixel.

Em contraste, entre 69 e 76 DAS, observou-se um aumento expressivo dos valores 
de NDVI, acompanhado também de maior estabilidade dos valores de NDRE. Esse 
comportamento está relacionado ao incremento da biomassa e ao fechamento 
completo do dossel, fase em que ocorre o máximo índice de área foliar da cultura. 
Contudo, como amplamente discutido por Morlin Carneiro et al. (2020) e Zanzarini 
et al. (2013), o NDVI tende a apresentar saturação a partir do momento em que 
a densidade foliar atinge altos níveis, reduzindo sua sensibilidade para detectar 
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diferenças estruturais entre tratamentos, comportamento também evidenciado 
no presente estudo, principalmente aos 69 DAS.

Aos 92 DAS, a maior variabilidade observada, especialmente em NDRE, pode 
ser atribuída à redução progressiva da clorofila foliar e ao início do processo 
de senescência, característicos do estádio reprodutivo avançado da soja (TAIZ; 
ZEIGER, 2017). Nesse estágio, o declínio da atividade fotossintética resulta em 
maior heterogeneidade espectral dentro do dossel, o que explica o aumento da 
amplitude dos valores detectados.

A estimativa de produtividade para o tratamento 1 (densidade de 21,2 sementes 
m⁻¹) foi realizada em função das épocas avaliadas (36, 69, 76, 85 e 92 DAS). Os 
melhores resultados para NDVI foram observados aos 36 e 76 DAS, com R² de 
90,34% e 85,59%, respectivamente. 

Esses achados reforçam que, embora o NDVI apresente saturação em biomassa 
elevada, ele ainda possui alta capacidade preditiva em fases iniciais e intermediárias 
do ciclo, antes que o fechamento pleno do dossel comprometa sua sensibilidade, 
como discutido em Gitelson (2004b).

Para o NDRE, os maiores coeficientes de determinação ocorreram aos 69, 76 
e 92 DAS, com R² de 94,95%, 99,85% e 99,79%, respectivamente. Esses resultados 
indicam que o NDRE mantém alta sensibilidade mesmo em estádios avançados da 
cultura, característica já consolidada em estudos que demonstram sua superioridade 
frente ao NDVI após o fechamento do dossel (GITELSON et al., 2006; XUE; SU, 2017). 
Isso ocorre porque o NDRE utiliza o comprimento de onda da borda vermelha, 
região espectral que penetra mais profundamente no dossel e apresenta menor 
saturação em altas densidades foliares (RED EDGE), permitindo discriminar diferenças 
estruturais e fisiológicas que o NDVI não detecta.

Para o tratamento 2, observou-se que as melhores épocas para estimar a 
produtividade da soja utilizando o NDVI foram aos 76 e 92 DAS, com coeficientes 
de determinação de 91,91% e 90,64%, respectivamente (Figuras 7c e 7e). Esse 
comportamento é coerente com a literatura, que aponta que o NDVI mantém boa 
habilidade preditiva até o início do período de estabilização do índice, quando o 
dossel ainda não atingiu saturação total, mas já apresenta elevado acúmulo de 
área foliar (GITELSON et al., 2004; VINA et al., 2011). A partir desse ponto, pequenas 
diferenças estruturais entre plantas deixam de ser registradas, fenômeno amplamente 
reconhecido como saturação espectral do NDVI.
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Figura 7. Análise de regressão linear entre produtividade e índices de vegetação 
(NDVI - Normalized Difference Vegetation Index e NDRE - Normalized Difference 

Red Edge Index) em função da densidade de semeadura (22,5 sementes por metro). 
T1 – Tratamento 1 (21,2 sementes por metro). DAS: Dias após a semeadura. 

Fonte: Autores (2025).

Para o NDRE, os melhores resultados foram obtidos aos 76, 85 e 92 DAS, com 
coeficientes de determinação de 91,59%, 93,30% e 99,79%, respectivamente (Figuras 
8c, 8d e 8e). A literatura demonstra que o NDRE apresenta maior capacidade de 
discriminação em dosséis densos por utilizar comprimentos de onda da borda-
vermelha, menos suscetíveis à saturação e mais sensíveis às alterações fisiológicas 
associadas à senescência e à clorofila (GITELSON et al., 2005; XUE; SU, 2017). Esse 
comportamento explica o desempenho superior do NDRE aos 92 DAS, momento 
em que a cultura passa por mudanças metabólicas relevantes para a previsão de 
produtividade.

Em ambos os tratamentos, a época que melhor estimou a produtividade foi 
aos 92 DAS, utilizando o NDRE, que apresentou coeficiente de determinação de 
99,79%. Esse resultado reforça achados de pesquisas que indicam a superioridade 
de índices baseados na borda-vermelha em estádios reprodutivos avançados da 
soja (ZANZARINI et al., 2013).
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A maior produtividade foi observada no tratamento 2, com densidade de 22,5 
sementes por metro, representando um incremento de 1,69 sacas por hectare em 
comparação ao tratamento 1 (21,2 sementes por metro). Incrementos moderados 
de densidade podem aumentar a interceptação de radiação e melhorar a eficiência 
de uso da luz, especialmente em cultivares de hábito determinado, conforme 
demonstrado em estudos agronômicos recentes (BOARD; KAMAL, 2021). Contudo, o 
aumento excessivo da densidade tende a gerar competição intraespecífica, reduzindo 
o potencial produtivo, o que reforça a necessidade de ajustes precisos.

A Figura 6 complementa os resultados ao apresentar as análises de correlação 
entre produtividade e índices de vegetação. Os maiores valores de correlação entre 
NDVI e produtividade ocorreram aos 36 DAS (tratamento 1) e aos 76 DAS (tratamento 
2). A correlação elevada aos 36 DAS reforça que diferenças iniciais de vigor podem 
impactar na produtividade. Por outro lado, a alta correlação aos 76 DAS coincide 
com o período de maior índice de área foliar, no qual a eficiência de interceptação 
luminosa se relaciona diretamente com a formação dos componentes de rendimento.

Para o NDRE, as maiores correlações foram encontradas aos 69, 76 e 85 DAS, 
correspondendo ao tratamento 1 (69 DAS) e ao tratamento 2 (76 e 85 DAS). A 
literatura destaca que a banda da borda-vermelha possui sensibilidade superior 
para detectar variações relacionadas ao teor de clorofila, estresse fisiológico e 
vigor reprodutivo, o que explica as correlações elevadas observadas (GITELSON et 
al., 2006). Assim, as análises reforçam que o NDRE apresenta maior estabilidade e 
precisão em estádios intermediários e avançados, conforme observado nas Figuras 
7a, 7c, 8b e 8c.
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Figura 8. Análise de regressão linear entre produtividade e índices de vegetação 
(NDVI - Normalized Difference Vegetation Index e NDRE - Normalized 

Difference Red Edge Index) em função da densidade de semeadura (22,5 
sementes por metro). T2 – Tratamento 2 (22,5 sementes por metro).

Fonte: Autores (2025)

Complementando o exposto, a Figura 9 apresenta as correlações entre a 
produtividade e os índices de vegetação (IVs). Para o NDVI, as maiores correlações 
foram registradas aos 36 DAS no tratamento 1 e aos 76 DAS no tratamento 2, 
indicando que o índice responde melhor nos estádios iniciais de desenvolvimento 
e próximo ao máximo crescimento vegetativo. Já o NDRE mostrou correlações mais 
elevadas aos 69, 76 e 85 DAS, contemplando ambos os tratamentos, o que evidencia 
sua maior sensibilidade em fases mais avançadas do ciclo, quando o dossel está mais 
fechado. Assim, os resultados apresentados nas Figuras 7a, 7c, 8b e 8c reforçam que 
o NDVI tende a ser mais eficiente para estimativas em fases vegetativas, enquanto o 
NDRE oferece maior precisão em períodos intermediários e reprodutivos da cultura.
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Figura 9. Coeficiente de Correlação de Pearson entre a produtividade e os índices de 
vegetação (NDVI - Normalized Difference Vegetation Index e NDRE - Normalized Difference 

Red Edge Index) em função da densidade de semeadura (21,2 e 22,5 sementes por 
metro) e das épocas de avaliação (36, 69, 76, 85 e 92 dias após a semeadura - DAS). T1 – 
Tratamento 1 (21,2 sementes por metro). T2 – Tratamento 2 (22,5 sementes por metro).

Fonte: Autores (2025)

Além disso, os resultados obtidos evidenciaram que ajustes precisos na densidade 
de semeadura podem contribuir para o incremento da produtividade agrícola. Tal 
abordagem visa oferecer aos produtores rurais ferramentas mais eficazes para 
otimizar o uso de insumos, reduzir custos operacionais e adotar práticas agrícolas mais 
sustentáveis, fortalecendo a segurança alimentar e promovendo o uso responsável 
dos recursos naturais.

A utilização conjunta de NDVI e NDRE no presente trabalho permitiu obter uma 
análise mais robusta e detalhada do estado das culturas monitoradas. Essa abordagem 
integrada possibilita o acompanhamento contínuo do desenvolvimento vegetal, 
desde as fases iniciais até momentos críticos relacionados ao manejo nutricional. 
Assim, os produtores podem realizar intervenções localizadas e precisas, promovendo 
o uso racional de insumos e contribuindo para a sustentabilidade ambiental e a 
rentabilidade econômica das lavouras (JIN et al., 2019a).

Os resultados deste estudo confirmam as descobertas de outros pesquisadores 
que também notaram variações significativas no desempenho dos índices de 
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vegetação de acordo com o estádio fenológico das culturas. Segundo Gitelson et 
al. (2004), o NDVI tende a saturar em estádios mais avançados de crescimento devido 
ao aumento da biomassa e maior densidade foliar, o que diminui sua sensibilidade 
para identificar variações na clorofila. 

Em contrapartida, o NDRE, ao incluir a banda da borda vermelha, preserva uma 
boa sensibilidade mesmo em densidades de dossel elevadas, conforme relatado por 
(HABOUDANE et al., 2004; MUTANGA; SKIDMORE, 2004). Isso justifica o elevado 
coeficiente de determinação (R²) observado aos 92 DAS neste estudo. Resultados 
semelhantes foram observados por JIN et al. (2019b), que encontraram uma forte 
correlação entre o NDRE e a produtividade de milho, sugerindo seu uso como um 
indicador confiável do estado fisiológico das plantas.

Por outro lado, (ZANZARINI et al., 2013; MORLIN CARNEIRO et al., 2020) também 
notaram o fenômeno de saturação no NDVI, corroborando a adequação desse 
índice apenas para as etapas iniciais do ciclo da cultura. Esses resultados mostram 
que o uso combinado de NDVI e NDRE aumenta a capacidade de monitoramento, 
possibilitando análises mais detalhadas e precisas sobre o vigor e a produtividade 
das plantas, em conformidade com os princípios da agricultura de precisão. 

Portanto, a escolha desses dois índices reflete a busca por maior acurácia e 
eficiência no monitoramento agrícola, dentro do contexto da agricultura de precisão. 
O emprego combinado do NDVI e NDRE proporciona um diagnóstico mais completo 
da condição fitossanitária e fisiológica das plantas, sendo essencial para a gestão 
inteligente da produção agrícola em tempo hábil (XUE; SU, 2017).

CONCLUSÃO 
Concluiu-se que o sensoriamento remoto proximal mostrou-se uma ferramenta 

eficaz para caracterizar o comportamento espectral da soja ao longo do ciclo da 
cultura, atendendo plenamente aos objetivos do estudo. O monitoramento temporal 
dos índices de vegetação evidenciou padrões compatíveis com os estádios fenológicos 
da cultura. Nas fases iniciais (36 DAS), a baixa cobertura vegetal resultou em menor 
sensibilidade dos índices devido à interferência do solo exposto. Entre 69 e 76 DAS, 
observou-se maior estabilidade e elevação dos valores espectrais, associadas ao 
fechamento do dossel e ao máximo acúmulo de biomassa. Aos 92 DAS, a maior 
variabilidade dos índices refletiu o início da senescência, evidenciando mudanças 
fisiológicas próprias dos estádios finais. Esses padrões demonstram que os índices 
foram capazes de captar respostas fisiológicas da planta às condições edafoclimáticas 
do Extremo Oeste do Paraná, marcadas por elevada variabilidade hídrica e forte 
influência da temperatura no desenvolvimento da soja.
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Na estimativa da produtividade, verificou-se que o NDRE apresentou desempenho 
superior ao NDVI, especialmente em estádios intermediários e finais, devido à menor 
saturação do índice na presença de elevada biomassa. Para a densidade de semeadura 
de 21,2 sementes m⁻¹, as melhores épocas de predição ocorreram aos 69, 76 e 92 
DAS, enquanto para a densidade de 22,5 sementes m⁻¹, os maiores valores de R² 
foram registrados aos 85 e 92 DAS. Em ambas as densidades, o NDRE aos 92 DAS 
apresentou o maior coeficiente de determinação, indicando maior sensibilidade às 
alterações estruturais e fisiológicas do dossel no final do ciclo.

O tratamento com densidade de 22,5 sementes m⁻¹ apresentou as maiores 
produtividades, com incremento de 1,69 sacas ha⁻¹ em relação ao tratamento com 
21,2 sementes m⁻¹. Esse resultado sugere que pequenas elevações na população 
de plantas podem melhorar a interceptação luminosa, aumentar o índice de área 
foliar e favorecer a compensação reprodutiva, desde que respeitados os limites 
de competição intraespecífica. Assim, ajustes na densidade de semeadura podem 
contribuir para sistemas produtivos mais eficientes, principalmente em ambientes 
com boa disponibilidade hídrica e fertilidade adequada, como os observados na 
área de estudo.

De modo geral, o NDVI demonstrou maior eficiência nas fases vegetativas, 
enquanto o NDRE se destacou como o índice mais preciso e estável para a predição 
de produtividade ao longo de todo o ciclo. Os resultados confirmam o potencial 
do sensoriamento remoto proximal como ferramenta estratégica para avaliar o 
desenvolvimento fisiológico da soja, identificar janelas críticas de manejo e aprimorar 
práticas agronômicas, contribuindo para sistemas de produção mais sustentáveis, 
eficientes e adaptados às condições regionais.
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