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RESUMO: A Estimação de Estado 
é uma ferramenta essencial para o 
monitoramento e operação em tempo 
real dos Sistemas Elétricos de Potência, 
fornecendo estimativas coerentes das 
variáveis de estado a partir de medições 
redundantes. O método dos Mínimos 
Quadrados Ponderados consolidou-se 
como a abordagem clássica devido à sua 
robustez matemática e fundamentação 

estatística; entretanto, sua eficiência pode 
ser comprometida na presença de erros 
grosseiros. Este artigo apresenta uma 
análise das limitações da Estimação de 
Estado por Mínimos Quadrados Ponderados 
por meio de três estudos de caso aplicados 
a um sistema-teste de 5 barras. No primeiro 
cenário, demonstra-se que, em uma 
configuração na qual todas as medidas 
tornam-se críticas, o teste dos resíduos 
normalizados identifica incorretamente a 
medição suspeita, e a retirada desta medida 
resulta na perda de observabilidade. No 
segundo cenário, evidencia-se a falha do 
teste Qui-quadrado em detectar um erro 
grosseiro. No terceiro cenário, mesmo 
apresentando erros múltiplos, os testes 
Qui-quadrado e resíduos normalizados 
identifica corretamente a medida errônea, 
porém a retirada dessa medida compromete 
a observabilidade, inviabilizando o processo 
de estimação. Os resultados reforçam que, 
em diferentes configurações adversas, o 
estimador de estado clássico apresenta 
limitações estruturais que comprometem a 
confiabilidade do processo de estimação, 
destacando a relevância de métodos 
alternativos para tratamento de erros 
grosseiros em Sistemas Elétricos de 
Potência.
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LIMITATIONS OF THE WEIGHTED LEAST SQUARES STATE ESTIMATOR: A 
CASE-BASED ANALYSIS

ABSTRACT: State Estimation is an essential tool for real-time monitoring and operation of 
Electric Power Systems, providing consistent estimates of state variables from redundant 
measurements. The Weighted Least Squares method has been consolidated as the 
classical approach due to its mathematical robustness and statistical foundation; however, 
its performance may be compromised in the presence of gross errors. This article presents 
an analysis of the limitations of Weighted Least Squares based State Estimation through 
three case studies applied to a 5-bus test system. In the first scenario, it is shown that when 
all measurements become critical, the normalized residual test incorrectly identifies the 
suspicious measurement, and the removal of this measurement leads to loss of observability. 
In the second scenario, the Chi-square test fails to detect the presence of a gross error. In 
the third scenario, although multiple errors are present, both the Chi-square and normalized 
residual tests correctly identify the faulty measurement; however, removing this measurement 
compromises observability, making the estimation process infeasible. The results demonstrate 
that, under different adverse configurations, the classical state estimator exhibits structural 
limitations that compromise the reliability of the estimation process, highlighting the importance 
of alternative methods for gross error processing in Electric Power Systems.
KEY-WORDS: State estimation, Bad data, Weighted Least Squares, Observability, Electric 
Power systems.

INTRODUÇÃO
A operação em tempo real dos Sistemas Elétricos de Potência (SEP) depende 

de informações confiáveis sobre o estado operacional da rede. A Estimação de Estado 
desempenha um papel central nesse processo ao fornecer, a partir de um conjunto 
redundante de medições, a melhor estimativa das variáveis de estado, sendo elas tensão 
e ângulo e de cada barra do SEP, filtrando ruídos presentes nos dados de medições 
(Schweppe; Wildes, 1970). Entre os métodos clássicos, o Estimador de Estado por 
Mínimos Quadrados ponderados (MQP) consolidou-se como a abordagem mais utilizada, 
devido à sua robustez matemática e fundamentação estatística (Abur; Gómez-Expósito, 
2004).

Apesar dessa aceitação ampla, diversos estudos têm demonstrado que o 
desempenho do Estimador pelo método MQP pode ser significativamente comprometido 
na presença de erros grosseiros nas medições. Quando esses erros assumem magnitudes 
elevadas ou ocorrem de forma simultânea e interativa, a metodologia clássica de detecção 
e identificação de erros respectivamente, teste do Qui-quadrado, e o teste do maior resíduo 
normalizado podem falhar, levando à identificação incorreta da medição defeituosa, 
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à permanência do erro na base de dados ou, ainda, à perda da observabilidade após 
a remoção de medidas. Situações como o efeito de mascaramento, onde as medidas 
apresentam baixos valores de resíduos, e o efeito de transbordamento, onde um valor 
alto de resíduo é identificado na medida que inicialmente está correta, geram falhas no 
processo de identificação de erros (Monticelli, 1999).

Além dessas falhas, há situações nas quais a retirada de uma única medida pode 
comprometer a observabilidade do sistema, tornando impossível estimar o estado do SEP. 
Assim embora o Método dos MQP apresente um bom desempenho na presença de erros 
gaussianos, sua confiabilidade não é garantida quando há presença de erros de magnitude 
elevada, conhecido como erros grosseiros (Asada, 2004). 

Neste trabalho são apresentados três cenários nos quais o Estimador de Estado 
dos MQP apresenta problemas no tratamento de erros, o que servirá de motivação para 
a proposição de novas estratégias de tratamento de erros grosseiros na Estimação de 
Estado em Sistemas Elétricos de Potência.

ESTIMAÇÃO DE ESTADO
A Estimação de Estado em SEP é uma ferramenta essencial para o monitoramento 

e operação segura das redes. Seu principal objetivo é fornecer, a partir de medições 
disponíveis, uma representação consistente e confiável das condições do sistema, 
permitindo que decisões operacionais sejam tomadas com base em informações filtradas e 
validadas. Segundo Abur; Gómez-Expósito, (2004), o problema consiste em determinar as 
tensões e fasores em todas as barras do sistema, a partir de um conjunto redundante de 
medidas que estão sujeitas a erros.

A capacidade do estimador de filtrar ruídos e tratar erros está diretamente ligada à 
redundância das medições. A redundância de um sistema é definida como a razão entre o 
número de medidas  e o número de variáveis de estado , que para um sistema de  barras é 
igual a . Uma maior redundância aumenta a confiabilidade do processo, tornando o sistema 
mais robusto à presenta de dados incorretos e a falhas na aquisição de medidas (Florez, 
2013).

Análise de Observabilidade
Antes que o processo de Estimação de Estado seja executado, é necessário 

determinar se o conjunto de medições disponíveis é suficiente para calcular uma solução 
única para todo o sistema. A propriedade que garante essa condição é chamada de 
observabilidade. Formalmente, um SEP é considerado observável se, a partir do conjunto 
de medições e do conhecimento dos parâmetros da rede, for possível determinar de forma 
exata os valores de todas as variáveis de estado (Abur; Gómez-Expósito, 2004).
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A análise de observabilidade é, portanto, um pré-requisito fundamental na Estimação 
de Estado. A falha em garantir a observabilidade do sistema acarreta consequências 
diretas na solução do problema. Matematicamente, se o sistema não for observável, a 
matriz Jacobiana das medições  não terá posto completo. Isso resulta em uma matriz 
de ganho  singular, tornando impossível a obtenção de uma solução única pelo método 
dos MQP (Abur; Gómez-Expósito, 2004).

A condição matemática para a observabilidade numérica está, portanto, diretamente 
ligada ao posto da matriz . De acordo com a Equação (1), o sistema é considerado 
observável quando a matriz possui posto completo.

(1)

Onde:
, representa o número de variáveis de estado do sistema (  para um 

sistema de  barras);
A análise de observabilidade também permite identificar medidas críticas, isto é, 

medições cuja retirada torna o sistema não observável. O método de análise de criticidade 
baseado na mudança de base da matriz jacobiana desacoplada, possibilita detectar 
medidas críticas individuais e conjuntos de medidas críticas.

O método proposto por London Jr; Alberto; Bretas, (2001), é realizado a partir do 
modelo desacoplado  e então é feita uma mudança de base obtendo uma matriz , 
dada pela Equação (2).

(2)

Onde:
, representa a matriz  na nova base;

, representa a submatriz identidade de dimensão ;
, representa a submatriz de dimensão ;

Analisando a submatriz , nota-se que as suas linhas são, isoladamente, linearmente 
independentes. Por esta razão, as medidas correspondentes a essas linhas são chamadas 
de medidas básicas, o que significa estas medidas são suficientes para tornar o sistema 
observável. As outras medidas são chamadas de medidas suplementares. Quando uma 
coluna da matriz  tem apenas um elemento não nulo, isto indica que a informação do 
estado equivalente, que corresponde àquela coluna, é provida exclusivamente por uma 
única medição e, portanto, essa medida é crítica (London Jr; Alberto; Bretas, 2001).
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Método dos Mínimos Quadrados Ponderados
Dos métodos clássicos existentes, o mais utilizado na Estimação de Estado é o 

método dos MQP. Neste procedimento, o vetor de medições  é relacionado ao vetor de 
estado  por meio de funções não lineares  acrescidas de um termo de erro , 
conforme Equação (3).

(3)

Onde  é o vetor de medições,  representa as funções não lineares que 
relacionam o estado às medições, e  é o vetor de erros.

A função objetivo deste modelo tem por finalidade minimizar a soma ponderada dos 
resíduos (Asada, 2004).

(4)

Ou então, considerando que  e , a função objetivo pode ser 
reescrita da seguinte forma:

(5)

A formulação ainda pode ser reescrita em termos de vetores, conforme a Equação 
(6).

(6)

A estimação pelo método dos MQP do vetor  é obtida de maneira iterativa, a partir 
do cálculo da matriz Jacobiana e da resolução da Equação (7).

(7)

Onde:
  é o   termo do vetor ;

	  é a matriz ganho do sistema, calculada conforme a Equação (8).

(8)
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E atualização do processo:

(9)

Sendo  o número de iterações até que o critério de parada seja atingido e  o 
valor da variável de estado estimada. O processo iterativo da Estimação de Estado termina 
quando  for menor do que o valor de tolerância estabelecido.

O processo de iterativo para determinar as variáveis de estado pelo método dos 
MQP é ilustrado na Figura 1.

Figura 1 - Processo iterativo para determinar as variáveis de estado

Fonte: Autoria própria (2025)

Erros de medição
Os erros em medições podem ser classificados em dois grupos principais:
•	 Erros normais (Gaussianos): correspondem a pequenas variações, tipicamente 

na faixa de . Estes erros são naturalmente filtrados pelo estimador, desde 
que haja redundância de medidas suficientes (Florez, 2013).

•	 Erros grosseiros (bad data): Ocorrem quando a diferença entre o valor real e 
o medido está na faixa de três a vinte vezes o desvio padrão. Estes erros não 
são filtrados e precisam ser detectados, seja na etapa de pré-filtragem ou pela 
análise de resíduos (Abur; Gómez-Expósito, 2004).

Os erros grosseiros podem ser classificados quanto a quantidade interatividade. 
Quanto a quantidade, um erro pode ser classificado como simples, afetando uma única 
medida, ou múltiplo, afetando diversas medidas simultaneamente. Os erros múltiplos são 
subdivididos em erros não-interativos e interativos, sendo que os erros interativos são 
subdivididos em erros não-conformativos e erros conformativos (Asada, 2004).



Coleção Engenharias: Ciência, Tecnologia e Inovação na Engenharia de 
Computação

Capítulo 13 162

A maior dificuldade de tratamento ocorre nos erros múltiplos interativos. O erro 
interativo não-conformativo causa grandes resíduos tanto nas medidas erradas quanto 
nas corretas, mas geralmente pode ser identificado. O erro interativo conformativo é o 
tipo mais problemático, pois o erro em uma medida é “mascarado” por erros em outras, 
fazendo com que as medidas erradas pareçam corretas, ou seja, apresenta baixo resíduo, 
em contrapartida, medidas corretas apresentam resíduos normalizados elevados (Abur; 
Gómez-Expósito, 2004; Monticelli, 1999).

Detecção e Identificação de Erros
O processo clássico de tratamento de erros grosseiros é tipicamente dividido em duas 

fases sequenciais: detecção e identificação. A detecção é a primeira etapa, responsável por 
avaliar se existe ou não um valor considerável de erro no conjunto de medições. A técnica 
mais comum para esta verificação é o teste do Qui-Quadrado ( , que avalia se o valor da 
função objetivo , após a convergência, está dentro de um limite estatístico aceitável.

Após a convergência do estimador, calcula-se o valor da função objetivo . 
Esse valor é comparado ao limiar da distribuição Qui-quadrado, considerando o número de 
graus de liberdade . Caso  exceda o valor crítico, presume-se a existência de 
erro grosseiro. Detectado o erro, inicia-se então a fase de identificação de erros.

Esta fase busca localizar qual medição específica é a provável fonte de erro, sendo 
feito por padrão a análise dos resíduos normalizados, onde a medição com o maior resíduo 
normalizado em módulo é considerada a principal suspeita (Asada, 2004).

O resíduo normalizado é definido pela Equação (10).

(10)

Sendo:
, o valor do resíduo normalizado.

, o valor do resíduo (erro) de medição.
, valores da diagonal principal da matriz de covariância, estes valores representam 

a covariância de uma medida consigo mesma.
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ESTUDO DE CASO PROPOSTO
O estudo de caso aplicado neste trabalho consiste na análise do processo de 

Estimação de Estado dos MQP em três cenários distintos, construídos a partir de um 
sistema-teste de 5 barras amplamente utilizado em estudos no setor de SEP. Cada cenário 
foi elaborado com o objetivo de evidenciar limitações específicas da metodologia clássica 
de Estimação de Estado.

O estudo foi conduzido em quatro etapas principais:  definição da base de dados; 
aplicação da análise de observabilidade e criticidade; execução do estimador dos MQP; 
e aplicação da metodologia clássica para detecção e identificação de erros. Todo o 
processamento foi realizado no software MATLAB, seguindo as formulações clássicas 
apresentadas nas seções anteriores.

Sistema-teste de 5 barras
As análises foram aplicadas ao sistema-teste de 5 barras, apresentado na Figura 2.

Figura 2 - Sistema-teste de 5 barras

Fonte: Adaptado de Stagg; El-Abiad (1968, p. 284)

A base de dados deste SEP é apresentada na Tabela 1, com informações das 
impedâncias das linhas de transmissão e as admitâncias por unidade em uma base de 100 
MVA.
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Barra inicial Barra final R X bsh/2
1 2 0.02 0.06 0.030
1 3 0.08 0.24 0.025
2 3 0.06 0.18 0.020
2 4 0.06 0.18 0.020
2 5 0.04 0.12 0.015
3 3 0.01 0.03 0.010
4 5 0.08 0.24 0.025

 Tabela 1 - Parâmetros do sistema-teste de 5 barras

Fonte: Adaptado de Stagg; El-Abiad (1968, p. 284)

A Tabela 2 apresenta o conjunto de medições utilizado, incluindo os valores de 
injeções de potência, fluxo de potência, as magnitudes de tensão, além das respectivas 
barras onde cada medição está localizada. 

MED TM Barra inicial Barra final Z (pu)
1 1 2 2 0.2000
2 1 3 3 -0.4500
3 1 5 5 -0.6000
4 2 2 2 0.2000
5 2 3 3 -0.1500
6 2 5 5 -0.1000
7 3 1 3 0.4072
8 3 5 4 -0.0630
9 4 1 3 0.0116
10 4 5 4 -0.0283
11 5 4 4 1.0236
12 5 5 5 1.0179

Tabela 2 – Base de dados do sistema-teste de 5 barras

Fonte: Adaptado de Stagg; El-Abiad (1968, p. 284)

A coluna MED indica a posição da medida, a coluna Z representa o valor da 
medição em por unidade e a coluna TM identifica o tipo de medição, conforme a seguinte 
classificação:

1 – Medida de injeção de potência ativa;
2 – Medida de injeção de potência reativa;
3 – Medida de fluxo de potência ativa;
4 – Medida de fluxo de potência reativa;
5 – Medida de magnitude de tensão;
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Construção do Cenário 1
Para criar o cenário crítico, foi empregado o método de análise de criticidade de 

medidas, a aplicação deste método requer a obtenção da matriz jacobiana desacoplada do 
sistema, a qual é descrita pela matriz na Equação (11).

(11)

Após a obtenção da matriz, foi realizada a mudança de base e, encontrada a matriz
 , dada pela Equação (12).

(12)

Analisando a matriz , conclui-se que:
1ª coluna: Par crítico de medida [ ;
2ª coluna: Par crítico de medida ;
3ª coluna: Par crítico de medida ;
4ª coluna: Par crítico de medida ;

Portanto, a retirada da medida 8 e 10, que correspondem, respectivamente, às 
medições de   e ,uma vez que se considera que os fluxos de potência ativa e 
reativa são provenientes do mesmo medidor. A retirada dessas medidas faria com que 
todas as outras medidas restantes sejam críticas, então se faz necessário calcular as 
matrizes   e  , expressas, respectivamente, pela Equação (13) e pela Equação (14).

(13)



Coleção Engenharias: Ciência, Tecnologia e Inovação na Engenharia de 
Computação

Capítulo 13 166

(14)

Como cada coluna apresentou apenas um valor não nulo (exceto a última coluna, 
como é esperado), conclui-se que todas as medidas são críticas.

Após encontrado um cenário onde todas as medidas são críticas, foi inserido um 
erro grosseiro na medida 7, correspondente a , a nova base de dados é 
apresentada na Tabela 3.

MED TM Barra inicial Barra final Z (pu)
1 1 2 2 0.2000
2 1 3 3 -0.4500
3 1 5 5 -0.6000

4 2 2 2 0.2000
5 2 3 3 -0.1500

6 2 5 5 -0.1000
7 3 1 3 -1.5000
8 4 1 3 0.0116
9 5 4 4 1.0236
10 5 5 5 1.0179

Tabela 3 - Nova base de dados do sistema para o cenário 1

Fonte: Autoria própria (2025)

Inicialmente, conforme a metodologia de análise de observabilidade apresentada 
na Equação (1), verifica-se o posto da matriz ganho para assegurar que, mesmo após a 
retirada das medidas, o sistema permaneça observável. O posto da matriz é obtido por 
meio do comando rank, enquanto o número de variáveis de estado pode ser determinado a 
partir da dimensão da matriz ganho, utilizando o comando size. A partir desses comandos 
verificou-se que   e que o número de variáveis de estado é ; portanto, 
conclui-se que o sistema é observável.

Após a análise de observabilidade, executa-se o estimador de estado dos MQP. Na 
saída gerada pelo MATLAB foram obtidos os valores estimados das variáveis de estado, 
bem como os resíduos e os resíduos normalizados associados a cada medição. Esses 
resultados estão apresentados, respectivamente, na Tabela 4 e Tabela 5.
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Barra V (pu)  (rad)
1 0.8468 0.0000
2 0.9371 12.8416
3 1.0468 23.3817
4 1.1113 27.6454
5 0.9645 15.5560

Tabela 4 - Variáveis de estado estimadas no cenário 1

Fonte: Autoria própria (2025)

MED TM Z (pu) R RN
1 1 0.2000 -0.0000 2.7368
2 1 -0.4500 -0.0000 2.7383
3 1 -0.6000 -0.0001 2.7432
4 2 0.2000 -0.0001 2.7442
5 2 -0.1500 -0.0001 2.7425
6 2 -0.1000 -0.0003 2.7434
7 3 -1.5000 -0.0602 2.7413
8 4 0.0116 -0.0485 2.7417
9 5 1.0236 -0.0877 2.7425
10 5 1.0179 0.0534 2.7436

 

Tabela 5 - Medições, resíduos e resíduos normalizados no cenário 1

Fonte: Autoria própria (2025)

O valor calculado para o teste Qui-quadrado nesse sistema foi , enquanto 
o limiar para 99% de confiança é 6,63. Como  o teste do Qui-quadrado indica a 
presença de erro grosseiro no conjunto de dados. Na sequência, aplica-se o teste do maior 
resíduo normalizado, que apontou o maior valor em módulo igual a 2,7442, correspondente 
à medição de número 4. Assim, conforme o procedimento clássico, esta medição é 
identificada como suspeita. Considerando que as medições de potência ativa e reativa são 
provenientes do mesmo medidor físico, a remoção da medida 4 implica também a retirada 
da medida associada de potência ativa (medição 1), portanto a nova base de dados é 
apresentada na Tabela 6.
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MED TM Barra inicial Barra final Z (pu)
1 1 3 3 -0.4500
2 1 5 5 -0.6000
3 2 3 3 -0.1500
4 2 5 5 -0.1000
5 3 1 3 -1.5000
6 4 1 3 0.0116
7 5 4 4 1.0236
8 5 5 5 1.0179

Tabela 6 - Base de dados para o cenário 1 após retirada das medidas 1 e 4

Fonte: Autoria própria (2025)

Diante da base de dados apresentada na Tabela 6, realizou-se uma nova análise 
de observabilidade, determinando o posto e a dimensão da matriz ganho. Verificou-se que 

, enquanto o número de variáveis de estado é ; assim, conforme a 
Equação (1), conclui-se que o sistema se tornou inobservável.

Isso demonstra uma falha dupla da metodologia clássica, primeiramente, o teste 
dos resíduos normalizados falhou em identificar a medida correta, apontando para uma 
medição que não continha erro. Em segundo lugar, a remoção desta medida comprometeu 
a solução do sistema, causando a perda da observabilidade.

Construção do Cenário 2
Para a construção do cenário 2, realizou-se novamente a análise de criticidade 

das medidas do sistema. A partir dessa análise, foram obtidas as matrizes  e , 
apresentadas, respectivamente, nas Equações (15) e (16).

(15)

(16)
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Assim como no cenário 1, conclui-se que retirando a medida 8, correspondente a 
, que representa última linha da matriz, toda as outras medidas tornam-se críticas. 

Portanto calcula-se novamente as matrizes  e , expressas, respectivamente pelas 
Equações (17) e (18).

(17)

(18)

Para este cenário, foi inserido um erro grosseiro na medida 3, correspondente a 
, a Tabela 7 apresenta a base de dados para este cenário.

MED TM Barra inicial Barra final Z (pu)
1 1 2 2 0.2000
2 1 3 3 -0.4500
3 1 5 5 2.5000
4 2 2 2 0.2000
5 2 3 3 -0.1500
6 2 5 5 -0.1000
7 3 1 3 0.4072
8 4 1 3 0.0116
9 5 4 4 1.0236
10 5 5 5 1.0179

Tabela 7 - Nova base de dados para o cenário 2

Fonte: Autoria própria (2025)

Antes da execução do estimador de estado, realiza-se a análise de 
observabilidade do Cenário 2 para verificar se o sistema permanece observável 
após a retirada das medidas 8 e 10. Como  e o número de 
variáveis de estado é , conclui-se que o sistema permanece observável. 
Em seguida, aplica-se o Estimador de Estado dos MQP, obtendo-se as variáveis de estado 
estimadas, os resíduos e os resíduos normalizados, apresentados nas Tabela 8 e Tabela 9.
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Barra V (pu)  (rad)
1 1.0223 0.0000
2 1.0239 0.5864
3 0.9899 -5.4140
4 0.9893 -6.4118
5 1.0515 9.2378

Tabela 8 - Variáveis de estado estimados no cenário 2

Fonte: Autoria própria (2025)

MED TM Z (pu) R RN
1 1 0.2000 0.0000 1.1895
2 1 -0.4500 0.0000 1.1595
3 1 2.5000 0.0000 1.2504
4 2 0.2000 0.0001 1.2100
5 2 -0.1500 0.0000 1.2280
6 2 -0.1000 0.0002 1.1985
7 3 0.4072 0.0021 1.2167
8 4 0.0114 0.0157 1.2256
9 5 1.0236 0.0343 1.2147

10 5 1.0179 -0.0336 1.2173

Tabela 9 - Medições, resíduos e resíduos normalizados no cenário 2

Fonte: Autoria própria (2025)

O valor calculado para o teste Qui-quadrado nesse sistema foi  enquanto 
o limiar para 99% de confiança é 6,63. Como  o teste do Qui-quadrado não 
detectou a presença de erro grosseiro no conjunto de dados. Dessa forma, verifica-se que 
o método clássico para detecção de erros apresenta uma falha ao não detectar a presença 
de erro grosseiro na base de dados.

Construção do Cenário 3
Neste cenário, foi realizado uma modificação na base de dados do sistema-teste 

de 5 barras. As medidas de potência ativa e reativa na barra 2 (  e ), utilizadas 
anteriormente, foram substituídas pelas medidas de potência ativa e reativa na barra 1 (  
e ). A nova configuração de medidas do sistema está apresentada na Tabela 10.
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MED TM Barra inicial Barra final Z (pu)
1 1 1 1 1.2959
2 1 3 3 -0.4500
3 1 5 5 -0.6000
4 2 1 1 0.0742
5 2 3 3 -0.1500
6 2 5 5 -0.1000
7 3 1 3 0.4072
8 3 5 4 -0.0630
9 4 1 3 0.0116
10 4 5 4 -0.0283
11 5 4 4 1.0236
12 5 5 5 1.0179

Tabela 10 - Nova base de dados para o sistema-teste 5 barras

Fonte: Autoria própria (2025)

Foi novamente realizada a análise de criticidade das medidas, obtendo-se as 
matrizes  e  correspondentes à nova configuração do sistema. Essas matrizes 
estão apresentadas, respectivamente, nas Equações (19) e (20).

(19)

(20)

Conclui-se que, novamente, a retirada da medida , correspondente à ultima 
linha da matriz, torna todas as demais medidas críticas. Portanto retira-se a medida de  

e  da base de dados e refaz a análise de criticidade para comprovar a conclusão. 
A nova base de dados está disposta na Tabela 11, e as novas matrizes  e  estão 
representadas, respectivamente pelas Equações (21) e (22).
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MED TM Barra inicial Barra final Z (pu)
1 1 1 1 1.2959
2 1 3 3 -0.4500
3 1 5 5 -0.6000
4 2 1 1 0.0742
5 2 3 3 -0.1500
6 2 5 5 -0.1000
7 3 1 3 0.4072
8 4 1 3 0.0116
9 5 4 4 1.0236

10 5 5 5 1.0179

Tabela 11 - Base de dados para o cenário 3

Fonte: Autoria própria (2025)

(21)

(22)

Novamente como todas as colunas apresentaram apenas um valor não nulo, exceto 
a última coluna (como esperado), conclui-se que todas as medidas são críticas. 

Agora foram inseridos erros múltiplos grosseiros nas medidas de  e 
. A nova base de dados está disposta na Tabela 12.

MED TM Barra inicial Barra final Z (pu)
1 1 1 1 2.3000
2 1 3 3 -0.4500
3 1 5 5 -0.6000
4 2 1 1 0.0742
5 2 3 3 -0.1500
6 2 5 5 -0.1000
7 3 1 3 -1.0000
8 4 1 3 0.0116
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9 5 4 4 1.0236
10 5 5 5 1.0179

 

Tabela 12 - Nova base de dados para o cenário 3

Fonte: Autoria própria (2025)

Em seguida, realiza-se a análise de observabilidade para o cenário 3, utilizando o 
posto da matriz ganho e o número de variáveis de estado. Nesse caso, verifica-se que o   

e que o número de variáveis de estado é ; portanto, conclui-se que o 
sistema permanece observável.

Novamente, executa-se o estimador de estado, e os resultados obtidos das variáveis 
de estado estimadas, resíduos e resíduos normalizados associados a cada medição. Esses 
resultados estão apresentados, respectivamente, na Tabela 13 e Tabela 14.

Barra V (pu)  (rad)
1 0.9905 0.0000
2 0.9453 -11.9333
3 1.0624 12.7758
4 1.1200 18.1613
5 0.9480 -3.7040

Tabela 13 - Variáveis de estado estimadas no cenário 3

Fonte: Autoria própria (2025)

MED TM Z (pu) R RN
1 1 2.3000 0.0001 3.2900
2 1 -0.4500 -0.0001 3.2805
3 1 -0.6000 -0.0001 3.2851
4 2 0.0742 0.0002 3.2853
5 2 -0.1500 -0.0001 3.2863
6 2 -0.1000 -0.0004 3.2863
7 3 -1.0000 -0.0710 3.2849
8 4 0.0116 -0.0855 3.2853
9 5 1.0236 -0.0964 3.2856
10 5 1.0179 0.0700 3.2863

Tabela 14 - Medições, resíduos e resíduos normalizados no cenário 3
Fonte: Autoria própria (2025)

O valor calculado para o teste Qui-quadrado neste cenário foi , como  
o teste do Qui-quadrado indica a presença de erro grosseiro no conjunto de 

dados. Na sequência, aplica-se o teste do maior resíduo normalizado, que apontou o maior 
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valor em módulo igual a 3,29, correspondente à medição de número 1. Assim, conforme 
o procedimento clássico, esta medição é identificada como suspeita. Considerando que 
as medições de potência ativa e reativa são provenientes do mesmo medidor, retira-se as 
medidas de número 1 e 4, portanto a nova base de dados é apresentada na Tabela 15.

MED TM Barra inicial Barra final Z (pu)
1 1 3 3 -0.4500
2 1 5 5 -0.6000
3 2 3 3 -0.1500
4 2 5 5 -0.1000
5 3 1 3 -1.0000
6 4 1 3 0.0116
7 5 4 4 1.0236
8 5 5 5 1.0179

Tabela 15 - Nova base de dados para o cenário 3 após retirada de medidas

Fonte: Autoria própria (2025)

Diante a nova base de dados do Cenário 3, realiza-se novamente a análise de 
observabiliade. Verificou-se que , enquanto o número de variáveis de estado 
é ; portanto, conforme estabelecido pela Equação (1), conclui-se que o sistema se 
tornou não observável.

CONCLUSÃO
Os resultados obtidos nos três cenários analisados evidenciam limitações da 

Estimador de Estado dos MQP quando submetido à presença de erros grosseiros, 
especialmente em sistemas no quais todas as medições se tornam críticas, e a remoção 
de uma única medida pode comprometer a observabilidade, tornando inviável a aplicação 
do processo de estimação.

De forma geral, observou-se que, embora o método dos MQP seja amplamente 
consolidado e apresente desempenho satisfatório em condições normais de operação, sua 
eficácia é comprometida diante de erros grosseiros simples ou múltiplos, em especial em 
sistemas com alta sensibilidade à criticidade das medições. Nesses casos, tanto o teste 
Qui-quadrado quanto teste dos resíduos normalizados identificação podem falhar, seja por 
mascaramento, transbordamento ou pela própria perda da observabilidade após a remoção 
de medidas suspeitas.

Assim, este estudo contribui para evidenciar cenários nos quais o método clássico 
pode falhar, reforçando a necessidade de metodologias alternativas para o tratamento 
de erros grosseiros, como o uso de meta-heurísticas baseadas em algoritmos genéticos, 
capazes de lidar com múltiplas configurações de erros grosseiros de maneira combinatória.
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