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RESUMO: Sistemas lineares surgem em numerosas aplicações, incluindo, ciência da 
computação, discretização de equações diferenciais, problemas de otimização, além 
de muitos outros. Visando resolver sistemas lineares de forma eficaz, neste artigo, 
mediante uma revisão bibliográfica, abordamos aspectos teóricos e computacionais da 
decomposição LU com pivoteamento parcial. A vantagem de calcular a decomposição 
LU com pivoteamento parcial para uma matriz A de um sistema linear é que é 
mais fácil resolver sistemas linea- res quando as matrizes são triangulares, como 
as matrizes L e U desta decomposição. Na sequência, utilizando o ambiente de 
desenvolvimento integrando Code::Blocks desenvol- vemos uma implementação 
em linguagem C para decomposição LU com pivoteamento parcial e aplicamos 
a resolução de alguns exemplos. O código se mostrou eficiente na resolução de 
sistemas lineares não singulares.

PALAVRAS-CHAVE: Sistemas Lineares; Decomposição LU; Linguagem C.
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INTRODUÇÃO
Este trabalho foi desenvolvido sob a orientação do professor Emídio Santos 

Portilho Ju´nior visando aplicar as ferramentas computacionais estudadas no Projeto 
de Ensino Introdução aos Métodos Computacionais da Matemática Aplicada.

Um sistema linear pode ser reformulado como uma equação matricial na qual 
cada elemento de matriz ou de vetor pertence a um corpo, normalmente o dos 
nu´meros re- ais R (Cormen; Rivest; Stein, 2012). O objetivo deste trabalho é resolver 
sistemas de equações lineares através de uma implementação em Linguagem C do 
método denomi- nado decomposição LU com pivoteamento parcial.

Como mencionado anteriormente, inu´meras aplicações em computação, 
engenharias e ciências aplicadas nos remetem a necessidade de resolver conjuntos 
de equações lineares de forma simultaˆnea, o que, justifica a escolha do tema de 
deste trabalho.

Outro fator motivador na escolha do método da decomposição LU com 
privoteamento parcial como tema se deve a sua eficiência na resolução de sistemas 
lineares. Eficiência já consolidada na literatura matemática (Ruggiero; Lopes, 1997).

METODOLOGIA
Como se trata de um trabalho de revisão bibliográfica e implementação 

computacio- nal. Nesta Seção de Metodologia apresentaremos de forma sucinta e 
ordeira os aspectos teóricos que nos levaram a implementação do método.

UMA VISÃO GERAL DA DECOMPOSIÇÃO LU 
COM PIVOTEAMENTO PARCIAL

Começamos com um conjunto de n equações lineares com n incógnitas:

Uma solução para as equações (1) é um conjunto de valores para x1, x2, . . . , 
xn que sa- tisfaz todas as equações simultâneamente. Um modo conveniente de 
expressar as equacões (1) é  sob a forma de uma equação matricial de vetores.an1	
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o que é equivalente a escrever

Ax = b.                                           (2)

Se A é não singular, possui uma inversa A−1, e

x = A−1b                                       (3)

é o vetor solução.

Ou seja, para resolver o sistema (2), poderíamos calcular A−1 e, depois, usando 
a equação (3), multiplicando b por A−1 e obter x = A−1b. Na prática, essa abordagem 
demanda um grande custo computacional. Além de sofrer de instabilidade numérica. 
Felizmente, a decomposição LU com pivoteamento parcial é numéricamente mais 
estável e mais rápida na prática (Cormen; Rivest; Stein, 2012).

A ideia por trás da decomposição LU com pivoteamento parcial é encontrar 
três ma- trizes n × n, L, U e P , tais que

PA = LU                              (4)

onde L é uma matriz triangular inferior unitária, U é uma matriz triangular 
superior e P é uma matriz de permutação.

A vantagem de calcular a decomposição LU com pivoteamento parcial 
para a matriz A é que é mais fácil resolver sistemas lineares quando as matrizes 



57

CA
PÍ

TU
LO

 3
D

EC
O

M
PO

SI
ÇÃ

O
 L

U
 C

O
M

 P
IV

O
TE

A
M

EN
TO

 P
A

RC
IA

L:
 A

SP
EC

TO
S 

TE
Ó

RI
CO

S 
E 

CO
M

PU
TA

CI
O

N
A

IS

são triangulares, como é o caso das matrizes L e U . Uma vez determinada uma 
decomposição PA = LU para A, podemos resolver a equação (2) resolvendo somente 
sistemas lineares triangulares da maneira mostrada a seguir. Multiplicando ambos 
os lados de Ax = b por P obtemos a equação equivalente PAx = Pb que, equivale a 
permutar as equações em (1).

Usando a decomposição (4), obtemos

LUx = Pb

Agora definimos y = Ux, onde x é o vetor solução desejado. Primeiro, resolvemos 
o sistema triangular inferior

Ly = Pb                         (5)

para o vetor incógnita y por um método denominado “substituição direta”. 
Depois de resolvido y, resolvemos o sistema triangular superior

Ux = y                             (6)

para a incógnita x por um método denominado “substituição reversa”.

SUBSTITUIÇÃO DIRETA E INVERSA
A substituição direta pode resolver o sistema triangular inferior (5). Por 

conveniência, representamos a permutação P compactamente por um arranjo [1, 
2, . . . , n]. Para i = 1, 2, . . . , n, a entrada π [i] inddica que Pi,π[i] = 1 e Pij = 0 para j ≠π 
[i]. Visto que L é triangular inferior unitária, a equação (5) pode ser reescrita como
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Em geral, substituimos y1, y2, . . . , yi−1 “diretamente” na i-ésima equação para 
resol- ver para yi:

Agora que resolvemos para y, resolvemos para x na equação (6) usando 
substituição reversa, que é semelhante a substituição direta. Aqui, resolvemos 
primeiro a n-ésima equação e trabalhamos em sentido contrário até a primeira 
equação. Visto que U é triangular superior, podemos reescrever o sistema (6) como

Assim, podemos resolver sucessivamente para xn, xn−1, . . . , x1, da seguinte 
maneira:

CALCULANDO UMA DECOMPOSIÇÃO LU
Como visto, se podemos criar uma decomposição LU com pivoteamento parcial 

para uma matriz não singular A, substituição direta e substituição inversa podem 
resolver o sistema Ax = b de equações lineares.

Para calcularmos a decomposição LU usamos o método de eliminação de 
Gauss. Começamos subtraindo multiplos da primeira equação das outras equações 
para eliminar a primeira variável dessas equações. Então, subtráımos mu´ltiplos da 
segunda equação da terceira equação e das subsequentes, de modo que agora a 
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primeira e a segunda variáveis são eliminadas dessas equações. Continuamos esse 
processo até que o sistema remanes- cente tenha forma triangular superior, na 
verdade, ele é a matriz U . A matriz L é formada pelos multiplicadores de linha que 
provocam a eliminação de variáveis (Cormen; Rivest; Stein, 2012).

ESTRATÉGIA DE PIVOTEAMENTO PARCIAL
Em geral, quando resolvemos um sistema de equações lineares Ax = b, temos 

de pivotear em elementos de A que estão fora da diagonal para evitar divisão por 
zero e por valores pequenos, mesmo que A seja não singular, visto que isso pode 
produzir insta- bilidades numéricas. Então, tentamos pivotear em um valor grande 
(Ruggiero; Lopes, 1997).

A estratégia de pivoteamento parcial consiste em:

1.	 no início da etapa k da fase de eliminação, escolher para pivoˆ o elemento 
de maior módulo entre os coeficientes: ak−1, i = k, k + 1, . . . , n;

2.	 trocar as linhas k e i se for necessário.

RESULTADOS E DISCUSSÃO
As considerações teóricas feitas até aqui nos permitiram elaborar o algoritmo (ou 

pseudocódigo) exposto na Subseção 3.1. Este algoritmo viabilizou a implementação 
em Linguagem C da fatoração LU com pivoteamento parcial assim como seu uso 
na resolução dos sistemas lineares apresentados na Subseção 3.2.

ALGORITMO
No que segue, apresentamos o pseudocódigo que resolve o sistema linear (1) 

via Decomposição LU com Pivoteamento Parcial.

Algorithm 1 Decomposição LU com Pivoteamento Parcial

ik
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O pseudocódigo acima foi transferido para Linguagem C no ambiente de 
desenvolvi- mento integrado Code::Blocks.

Os conceitos computacionais necessários a implementação, como Tipo de 
variáveis, Vetores, Controle de Fluxo, Funções, Cabeçalhos e etc., foram estudados 
no projeto de ensino Introdução aos Métodos Computacionais da Matemática 
Aplicada que teve sua parte computacional baseada no livro C: Como Programar 
(Deitel; Deitel, 2011).
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EXEMPLOS NUMÉRICOS
Nesta Subseção apresentaremos alguns exemplos resolvidos pelo código 

computa- cional que desenvolvemos. Estes exemplos foram tomados de (Ruggiero; 
Lopes, 1997). Todos os testes foram realizados com o sistema operacional 64-bit 
Windows 10, processa- dor Intel Core I7-8550U, 1,99 Ghz, 16 GB de memória Ram. 
As soluções serão exibidas por meio de fotos da tela de console do Code::Blocks.

Exemplo 1: Resolva o sistema linear

A solução obtida pelo códi

 

go computacional está exibida na Figura 1.

Figura 1 - Solução do Exemplo 1.

Fonte: Os Próprios Autores (2024).

O vetor p mencionado na Figura 1 indica quais linhas foram permutadas. 
Como se pode notar, neste exemplo não foram necessárias permutações. Os dados 
subsequentes representam a solução obtida para o problema. Esta solução pode ser 
facilmente verificada dado que se trata de um sistema de pequeno porte.
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Exemplo 2: Resolva o sistema linear

A solução obtida pelo código computacional está exibida na Figura 2. Neste 
exemplo também não houve a necessidade de se executar permutações nas linhas, 
como pode ser notado no vetor de permutação p. A solução também pode ser 
facilmente verifica por substiuição direta no sistema.

Figura 2 - Solução do Exemplo 2.

Fonte: Os Próprios Autores (2024).
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Exemplo 3: Resolva o sistema linear

Este exemplo, embora d e pequeno porte, foi tomado de forma proposital, visto 
sa- bermos da necessidade da execução de permutações pelo método para fins de 
resolução. Como podemos notar pelo vetor p da Figura 3, durante o processo de 
resolução a primeira linha da matriz passou a ser a segunda. A segunda linha da 
disposição original passou a ser a terceira, ao passo que a terceira linha da disposição 
original passou a ser a primeira. Com este exemplo podemos verificar a efetividade 
do método em fazer permutações das linhas quando essas são necessárias.

Figura 3 - Solução do Exemplo 3.

Fonte: Os Próprios Autores (2024).
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Exemplo 3: Neste exemplo iremos resolver um sistema de ordem 10 dado por

Assim como nos outros exemplos, o método implementado, se mostrou eficiente 
na resolução do sistema linear. A solução está exposta na Figura 4, onde também 
podemos observar o vetor p que evidencia que neste caso houve uma necessidade 
maior de permutação das linhas do sistema linear.

Figura 4 - Solução do Exemplo 4.

Fonte: Os Próprios Autores (2024).
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CONSIDERAÇ Õ ES FINAIS
Concluímos que a revisão bibliográfica foi efetiva em fornecer as informações ma- 

temáticas necessárias para o desenvolvido do pseudocódigo expresso na Subseção 
3.1. Este pseudocódigo permitiu a implementação sistemática da DecomposiçãoLU 
com Pi- voteamento Parcial. Vale ressaltar que embora o pseudocódigo não seja tão 
extenso, o mesmo não acontece ao se fazer a implementação em Linguagem C na 
IDE CodeBlocks. A implementação se mostrou extensa e laboriosa. Apesar do duro 
trabalho no desen- volvimento do código em Linguagem C, os resultados obtidos 
na resolução dos sistemas lineares apresentados na Subseção 3.2 foram satisfatórios, 
evidenciando a eficiência do método e da implementação desenvolvida.
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