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ABSTRACT: This study presents a model
based on Interval Type-2 Fuzzy Logic Sys-
tems (I'T2 FLS) applied to the Metal Inert
Gas (MIG) welding process, aimed at re-
presenting and predicting weld bead beha-
vior under uncertain conditions. The model
considers six input variables: gas flow rate,
work angle, wire feed speed, arc voltage
(Trim), travel speed (IPM), and welding te-
chnique (push or pull), using experimental
data obtained from an automated welding
cell. Each variable was characterized by
five membership functions (very low, low,
medium, high, and very high), allowing
the definition of the Footprint of Uncer-
tainty (FOU) associated with experimental
dispersion. Statistical validation through
Analysis of Variance (ANOVA) showed a
value of , confirming the statistical signi-
ficance of the model, while the coeflicient
of determination indicated that the model
explained 86.4% of the total variability in
the experimental data. These results de-
monstrate that the I'T2 FLS is a robust and
accurate tool for modeling welding proces-
ses with nonlinear and uncertain behavior,
providing a solid foundation for the deve-
lopment of intelligent systems for control
and optimization of the MIG process.

KEYWORDS: MIG welding, type-2 fuzzy
logic, uncertainty, process modeling, in-
telligent control.

Introduction

Metal Inert Gas (MIG) welding,
also known as Gas Metal Arc Welding
(GMAW), is one of the most widely used
joining processes in the manufacturing in-
dustry due to its versatility, efficiency, and
high degree of automation. Its performan-
ce depends on several operational variables

DOl https://doi.org/10.22533/at.ed.3175825011011

such as current, voltage, wire feed speed,
travel speed, shielding gas flow rate, and
torch angle, whose nonlinear interaction
directly affects penetration depth and the
occurrence of defects [1, 2].

Accurate control of these parameters
represents one of the main challenges of
the GMAW process. Current and voltage
determine arc stability and metal transfer,
while wire feed speed and gas flow regula-
te the deposition rate and the protection of
the molten pool. However, these variables
exhibit strong dynamic interdependence,
meaning that small variations in one para-
meter can alter bead geometry, penetration
depth, or cause defects such as porosity and
lack of fusion. In addition, the process res-
ponse is highly sensitive to electrical noise,
environmental thermal conditions, and
base material properties, which limits pro-
cess repeatability under industrial environ-
ments [3] .

From an operational standpoint, this
complexity prevents the use of simple de-
terministic or linear models to predict weld
bead quality, leading operators to empiri-
cally adjust process parameters. Recent stu-
dies have shown that even slight deviations
in voltage or wire feed speed can signifi-
cantly modify the penetration profile and
microstructure of the deposited material
[4]. According to Song and Hardt (1993),
the dynamic nature of the welding process
requires adaptive control strategies capab-
le of adjusting parameters in real time to
maintain arc stability and weld quality.

For this reason, adaptive and intelli-
gent control of the GMAW process has be-
come a priority research area to stabilize the
arc, optimize energy efficiency, and enhan-
ce weld quality. In recent years, approaches
based on nonlinear modeling, predictive
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control, and intelligent systems have shown
substantial improvements in process stabili-
ty and repeatability compared to conventio-

nal methods [4, 5].

Classical optimization methods such
as Taguchi designs and Response Surface
Methodology (RSM) have proven useful
under controlled conditions, although their
accuracy decreases when environmental
fluctuations, noise, or arc instabilities occur
[2, 6]. In this context, artificial intelligence
(Al)-based approaches have gained relevan-
ce by offering tools capable of handling un-
certain information and learning nonlinear
relationships among process parameters [7].

Zhang, Mo, and Yu [8] implemen-
ted type-2 hierarchical fuzzy controllers
in vehicular systems, demonstrating their
robustness under uncertain and dynamic
environments.

Fuzzy logic is particularly useful for
representing expert knowledge through
linguistic rules. However, Type-1 Fuzzy Lo-
gic Systems (T'1 FLS) are sensitive to un-
certainty in membership functions, which
motivated the development of Type-2 Fu-
zzy Logic Systems (T2 FLS), proposed by
Zadeh, allowing uncertainty representation
through the Footprint of Uncertainty (FoU)
[9, 10]. Within this framework, Interval
Type-2 Fuzzy Logic Systems (IT2 FLS) pro-
vide a balance between computational com-
plexity and representational capability and
have been successfully applied to microgrid
frequency regulation [11], vehicle tracking
[8], and parameter adaptation using me-
taheuristic algorithms [12].

The robustness of IT2 FLS has also
been validated in industrial contexts. Mit-
tal et al. [7] and Shvedov [13] highlighted

their usefulness in modeling nonlinear rela-
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tionships under noisy environments. These
findings support the suitability of type-2
fuzzy systems for modeling processes with

high experimental variability.

In the case of MIG welding, the use
of type-2 fuzzy models is particularly pro-
mising due to the complex behavior of the
arc and the process’s sensitivity to small pa-
rameter variations. However, most previous
studies have focused on empirical or statis-
tical models that do not incorporate the un-
certain nature of experimental data. There-
fore, this study proposes a model based on
Interval Type-2 Fuzzy Logic Systems (IT2
FLS) for the MIG welding process, aiming
to capture parameter variability and impro-
ve the prediction of weld bead penetration.

Materials and Methods

Description of the MIG Welding
Process

The Metal Inert Gas (MIG) welding
process, also known as Gas Metal Arc Wel-
ding (GMAW), depends on a set of opera-
tional parameters whose interaction directly
influences arc stability, metal transfer, and
weld bead quality. Figure 1 illustrates the
six input parameters considered in this
study and their physical relationship with
bead formation, providing a conceptual fra-
mework for the experimental procedure and
fuzzy modeling approach.

MODELING OF THE MIG WELDING PROCESS USING INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS

<
S
£
<




Gas Flow Work
(GPH Angle (°)
Voltage ;’:)aev:(;
Trim (V) (1PM)
1—>
. Welding
Wire Feed Technique

Speed (WFS)

(Push/Pull)

Figure 1. Diagram of the six key parameters of
the MIG welding process.

The gas flow rate (GPH) protects the
molten pool from atmospheric contamina-
tion. Excessive low can cause turbulence,
while insufficient flow increases the like-
lihood of porosity. The work angle (°) af-
fects the arc direction and thus influences
both the penetration depth and the filler
metal distribution along the joint. The wire
feed speed (WES) determines the amount
of filler material deposited; higher values
increase bead size but also raise the risk of
overheating.

The arc voltage (Trim) regulates the
total energy and effective length of the arc.
Higher voltages generate longer and less pe-
netrating arcs, whereas lower voltages pro-
duce shorter and more stable arcs, leading to
more uniform penetration. The travel speed
(IPM) determines the heat input per unit
length; higher speeds result in narrow beads
with limited penetration, while lower speeds
cause excessive heat input and material ac-
cumulation. Finally, the welding technique
(push/pull) affects the thermal profile and
geometry of the bead: the push technique
produces wider and shallower beads, whe-
reas the pull technique promotes deeper
penetration.
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The base materials wused were
GMW3031 STSCR182 and ASTM A503
steels, joined using a solid wire AWS A5.18
ER70S-3 (ISO 14341 EN440 G2 SI 1)
with a diameter of 0.035 inches. The shiel-
ding gas consisted of an Ar-CO, mixture
with a flow rate maintained between 32
and 38 GPH, ensuring proper protection
of the molten pool and minimizing porosity
formation.

Experimental Design

The experiments were conducted in an
automated GMAW welding cell equipped
with a three-axis programmable manipu-
lator, ensuring high precision, arc stability,
and repeatability between trials. The experi-
mental objective was to analyze the influen-
ce of six operational parameters on the weld
bead penetration, which was considered the
main response variable.

A reduced factorial design (6%) was
adopted to explore representative combina-
tions of parameter levels while maintaining
an effective balance between experimental
space coverage and efficiency in the number
of runs. The parameters and levels conside-
red are summarized in Table 1.

Table 1. Experimental parameters and levels.

Input Symbol  Unit  Mini- Maxi-
variable mum  mum level
level
Gusflow X, GPH 32 38
Work angle X, ° 41 49
Wire feed X5 IPM 260 270
speed (WES)
Voltage X4 A% 0.7 0.9
(Trim)
Travel speed X IPM 29 32
Technique X — 1 (Pull) 2 (Push)
(Push—Pull)
4
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Each experimental combination was
evaluated by measuring the weld bead pe-
netration, obtained from metallographic
cross-sections and optical analysis using a
calibrated digital measurement system.

Interval Type-2 Fuzzy Logic System
(IT2 FLS)

The IT2 FLS model was formulated to
represent the nonlinear and uncertain rela-
tionships inherent to the GMAW process,
considering as input variables the six para-
meters described in Table 1 (X;—X¢) and
a single output variable corresponding to
weld bead penetration (Y). The system was
structured to capture experimental variabili-
ty and to model the combined effects of wel-
ding parameters on the resulting response.

Each input variable was characterized
by five membership functions (MFs) with
the linguistic labels Very Low (VL), Low
(L), Medium (M), High (H), and Very High
(VH). Two trapezoidal functions were assig-
ned to the lower and upper extremes of the
domain, while three triangular functions
were used in the intermediate region, ensu-
ring continuous coverage of the universe of
discourse and smooth transitions between
adjacent levels.

Figure 2 shows the membership func-
tions corresponding to variable X; (gas
flow), which are representative of the struc-
ture adopted for all input variables. This
configuration accurately described the gra-
dual variability of each parameter and de-
fined the Footprint of Uncertainty (FOU)
associated with the experimental dispersion
observed in the welding process.
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IT2 Membership Functions for X

1 1 Gas riow (GrH)

viempersnip graae

X 4 : Gas Flow (GPH)

Figure 2. Interval Type-2 membership functions
for variable X; (Gas Flow).

The triangular membership function is
defined according to Equation (1):

#(x;a,b,c) = max(min(—
b—a

[
C_b},ﬂ) (1

In an interval type-2 fuzzy logic sys-
tem, the membership degree of an element
is not described by a single value but by
an interval of membership bounded by
an upper membership function #® and a
lower membership function ’f;(x). This con-
cept is formally expressed in Equation (2):

A={xwlxeX. u el O}, L =4 (),ia;() @
A

The region enclosed between these two
functions represents the FOU, defined as:

FoU(A) = U [k @) pz(0)] (3)
A

xEX

The FOU constitutes the core of type-
2 reasoning, as it explicitly models the un-
certainty associated with the boundaries of
the membership functions. In this study, the
width of the FOU for each variable was es-
tablished proportionally to the experimental
dispersion observed, enabling a more realis-
tic representation of welding conditions and
their influence on penetration.
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The knowledge base was construc-
ted from the technical expertise of welding
specialists and the analysis of experimental
results. The fuzzy rules were formulated
following the classical [IF-THEN linguistic
structure proposed by Zadeh. A representa-
tive example of a rule is:

IFGasflowismedium AND Workangle ismedium AND Wire feedspeed (WFS)is high

AND Voltage (Trimjismed{'umaND TravelspeedislowAND Techniqueis
Pull THEN Penetrationishigh .

The inference process followed the
Mamdani approach, using min—max opera-
tors for rule activation and aggregation. Sub-
sequently, type-reduction was performed
using the centroid of sets method to trans-
form the resulting type-2 sets into equiva-
lent type-1 sets. Finally, defuzzification was
carried out using the centroid method, yiel-
ding a single numerical value corresponding
to the predicted weld penetration.

This architecture allowed the I'T2 FLS
model to integrate experimental uncertain-
ty, process parameter variability, and expert
knowledge coherently, providing a robust,
continuous, and physically interpretable
representation of the MIG welding process
behavior.

Model Evaluation and Validation

The statistical evaluation of the model
was performed through Analysis of Varian-
ce (ANOVA) and computation of the co-
efficient of determination (R?), in order to
validate the overall significance of the model
and its explanatory capacity regarding expe-
rimental variability.

The equations employed are expressed
as follows:

SSpMad = E 3, -57 (4)
i=1

S8 = 2, (i—7P (5)

oo ‘ DOI https://doi.org/10.22533/at.ed.3175825011011

58, = gl,{y,- =3P (6)
MS g0 = @)
MSg,, = SSres (8)

-p
Ri=1- % ©

The F-statistic was computed as:

M,
FI:I - 'Mod
M SR::

(10)

and was compared with the critical
F-value F (k, n - p) at a 95 % confidence le-
vel. A p-value < 0.05 was considered eviden-
ce of a statistically significant fit, confirming
that at least one input variable exerts a re-
levant influence on weld bead penetration.

Thus, the IT2 FLS model not only cap-
tured the inherent uncertainty of welding
parameters but also quantified their impact
on the experimental response through sta-
tistically validated performance metrics.

Results and Discussion
An Analysis of Variance (ANOVA)

was applied to evaluate the statistical signi-
ficance of the Interval Type-2 Fuzzy Logic
System (IT2 FLS) model and to determi-
ne the influence of operational parameters
on weld bead penetration. The results are
summarized in Table 2, showing that the
calculated value F, = 5.73 exceeds the cri-
tical table value F _,, = 3.37 at a 95%
confidence level. Moreover, the value
p =0.0104 < 0.05 confirms the existence of
a significant relationship between the input
variables and the response, thereby rejecting
the null hypothesis of independence.

MODELING OF THE MIG WELDING PROCESS USING INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS

<
S
£
<




Table 2. ANOVA results for the IT2 FLS model.

Source Sumof df Mean F,

O_f va- squares squares

table

F  p-value

riation

Model 1.3717 6 0.2286 5.726 3.374 0.0104
Residual 0.3593 9 0.0399 - - -
Total 1.5998 15 - - - -

The model sum of squares (SS, .
1.37) represents 85.7% of the total variation
(8S,,, = 1.60), which demonstrates good fit-
ting capability. In contrast, the residual sum
of squares (SS, = 0.36) indicates that the
dispersion of errors between experimental
and predicted values is moderate and shows
no evidence of lack of fit. The ratio between
the model and residual mean squares (MS-
vod/ MS,.. = 5.73) reflects a substantial effect
size, confirming that the model is not only
statistically significant but also practically
relevant for predicting process behavior.

The coefhcient of determination obtai-
ned was R? = 0.8640, meaning that the mo-
del explains 86.4% of the total variability in
the experimental data. This value indicates a
strong relationship between the input varia-
bles and the predicted response, validating
the fuzzy system’s structure. The remaining
13.6% is attributed to experimental noise
and interaction effects not captured by the
rule base.

Residual analysis revealed a random
distribution around the mean with no sys-
tematic patterns, supporting the statistical
validity of the fit and the consistency of
the model. This behavior indicates that the
designed rules and membership functions
successfully represented the relationship be-
tween welding parameters and weld bead
penetration, even under conditions of expe-
rimental uncertainty.
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Overall, the ANOVA and R? results
indicate that the I'T2 FLS model achieves
an appropriate balance between accuracy
and generalization. Its stability under small
variations in input parameters is attributed
to the Footprint of Uncertainty (FOU), whi-
ch enables a realistic representation of the
inherent uncertainty of the MIG process.
This behavior, distinct from conventional li-
near models, demonstrates the capability of
the I'T2 FLS to describe process variability
and predict weld penetration. Furthermo-
re, its adaptability under changing process
conditions suggests favorable potential for
integration into adaptive control systems
designed to maintain arc stability and weld
quality without requiring constant operator
intervention.

Conclusions

The Interval Type-2 Fuzzy Logic Sys-
tem (IT2 FLS) model applied to the MIG
welding process proved to be an effective
tool for representing and predicting weld
bead penetration and overall weld quality
under uncertain conditions. Its formula-
tion, based on six input variables associated
with process parameters, successfully captu-
red the nonlinear behavior and inherent va-
riability of welding with statistically verified
accuracy.

The Analysis of Variance (ANOVA)
confirmed the statistical significance of the
model with a p-value of 0.0104 < 0.05,
while the coefhicient of determination R? =
0.8640 indicated that it explained 86.4%
of the total experimental variability. These
results validate the relationship between the
input parameters and the fuzzy response,
demonstrating the I'T2 FLS’s ability to ac-
curately estimate weld bead penetration.
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The type-2 fuzzy logic approach ex-
plicitly incorporated uncertainty into the
membership functions, yielding a model
robust to data dispersion and experimental
noise. Unlike deterministic or linear appro-
aches, the interval fuzzy system provided the

Finally, it is recommended to valida-
te the model under industrial production
conditions to assess its performance in real
environments, taking into account factors
such as thermal variations, differences in
consumables, and environmental changes.

flexibility to represent multivariable rela-
tionships without imposing rigid functional
constraints, thus reproducing the physical
behavior of the MIG process with greater
realism.

It is also suggested to explore optimization
through evolutionary algorithms such as
Particle Swarm Optimization (PSO) or Ge-
netic Algorithms (GA) to fine-tune mem-

. . _ bership function parameters and fuzzy rule
From an industrial perspective, the

IT2 FLS model constitutes a solid founda-
tion for developing intelligent welding con-
trol systems. Its modular structure and lin-
guistic interpretability facilitate integration
into automated welding cells, where it could
be employed to adjust critical variables such
as voltage, gas flow, and travel speed, con-
tributing to more uniform penetration and
greater process stability.

weights. Integrating these techniques with
the IT2 FLS model could lead to the deve-
lopment of more adaptive and reliable con-
trol systems for welding processes subject to
high levels of uncertainty.
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