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ABSTRACT: This study presents a model 
based on Interval Type-2 Fuzzy Logic Sys-
tems (IT2 FLS) applied to the Metal Inert 
Gas (MIG) welding process, aimed at re-
presenting and predicting weld bead beha-
vior under uncertain conditions. The model 
considers six input variables: gas flow rate, 
work angle, wire feed speed, arc voltage 
(Trim), travel speed (IPM), and welding te-
chnique (push or pull), using experimental 
data obtained from an automated welding 
cell. Each variable was characterized by 
five membership functions (very low, low, 
medium, high, and very high), allowing 
the definition of the Footprint of Uncer-
tainty (FOU) associated with experimental 
dispersion. Statistical validation through 
Analysis of Variance (ANOVA) showed a 
value of , confirming the statistical signi-
ficance of the model, while the coefficient 
of determination indicated that the model 
explained 86.4% of the total variability in 
the experimental data. These results de-
monstrate that the IT2 FLS is a robust and 
accurate tool for modeling welding proces-
ses with nonlinear and uncertain behavior, 
providing a solid foundation for the deve-
lopment of intelligent systems for control 
and optimization of the MIG process.

KEYWORDS: MIG welding, type-2 fuzzy 
logic, uncertainty, process modeling, in-
telligent control.

Introduction

Metal Inert Gas (MIG) welding, 
also known as Gas Metal Arc Welding 
(GMAW), is one of the most widely used 
joining processes in the manufacturing in-
dustry due to its versatility, efficiency, and 
high degree of automation. Its performan-
ce depends on several operational variables 

such as current, voltage, wire feed speed, 
travel speed, shielding gas flow rate, and 
torch angle, whose nonlinear interaction 
directly affects penetration depth and the 
occurrence of defects [1, 2].

Accurate control of these parameters 
represents one of the main challenges of 
the GMAW process. Current and voltage 
determine arc stability and metal transfer, 
while wire feed speed and gas flow regula-
te the deposition rate and the protection of 
the molten pool. However, these variables 
exhibit strong dynamic interdependence, 
meaning that small variations in one para-
meter can alter bead geometry, penetration 
depth, or cause defects such as porosity and 
lack of fusion. In addition, the process res-
ponse is highly sensitive to electrical noise, 
environmental thermal conditions, and 
base material properties, which limits pro-
cess repeatability under industrial environ-
ments [3] .

From an operational standpoint, this 
complexity prevents the use of simple de-
terministic or linear models to predict weld 
bead quality, leading operators to empiri-
cally adjust process parameters. Recent stu-
dies have shown that even slight deviations 
in voltage or wire feed speed can signifi-
cantly modify the penetration profile and 
microstructure of the deposited material 
[4]. According to Song and Hardt (1993), 
the dynamic nature of the welding process 
requires adaptive control strategies capab-
le of adjusting parameters in real time to 
maintain arc stability and weld quality.

For this reason, adaptive and intelli-
gent control of the GMAW process has be-
come a priority research area to stabilize the 
arc, optimize energy efficiency, and enhan-
ce weld quality. In recent years, approaches 
based on nonlinear modeling, predictive 
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control, and intelligent systems have shown 
substantial improvements in process stabili-
ty and repeatability compared to conventio-
nal methods [4, 5].

Classical optimization methods such 
as Taguchi designs and Response Surface 
Methodology (RSM) have proven useful 
under controlled conditions, although their 
accuracy decreases when environmental 
fluctuations, noise, or arc instabilities occur 
[2, 6]. In this context, artificial intelligence 
(AI)-based approaches have gained relevan-
ce by offering tools capable of handling un-
certain information and learning nonlinear 
relationships among process parameters [7].

Zhang, Mo, and Yu [8] implemen-
ted type-2 hierarchical fuzzy controllers 
in vehicular systems, demonstrating their 
robustness under uncertain and dynamic 
environments.

Fuzzy logic is particularly useful for 
representing expert knowledge through 
linguistic rules. However, Type-1 Fuzzy Lo-
gic Systems (T1 FLS) are sensitive to un-
certainty in membership functions, which 
motivated the development of Type-2 Fu-
zzy Logic Systems (T2 FLS), proposed by 
Zadeh, allowing uncertainty representation 
through the Footprint of Uncertainty (FoU) 
[9, 10]. Within this framework, Interval 
Type-2 Fuzzy Logic Systems (IT2 FLS) pro-
vide a balance between computational com-
plexity and representational capability and 
have been successfully applied to microgrid 
frequency regulation [11], vehicle tracking 
[8], and parameter adaptation using me-
taheuristic algorithms [12].

The robustness of IT2 FLS has also 
been validated in industrial contexts. Mit-
tal et al. [7] and Shvedov [13] highlighted 
their usefulness in modeling nonlinear rela-

tionships under noisy environments. These 
findings support the suitability of type-2 
fuzzy systems for modeling processes with 
high experimental variability.

In the case of MIG welding, the use 
of type-2 fuzzy models is particularly pro-
mising due to the complex behavior of the 
arc and the process’s sensitivity to small pa-
rameter variations. However, most previous 
studies have focused on empirical or statis-
tical models that do not incorporate the un-
certain nature of experimental data. There-
fore, this study proposes a model based on 
Interval Type-2 Fuzzy Logic Systems (IT2 
FLS) for the MIG welding process, aiming 
to capture parameter variability and impro-
ve the prediction of weld bead penetration.

Materials and Methods

Description of the MIG Welding 
Process

The Metal Inert Gas (MIG) welding 
process, also known as Gas Metal Arc Wel-
ding (GMAW), depends on a set of opera-
tional parameters whose interaction directly 
influences arc stability, metal transfer, and 
weld bead quality. Figure 1 illustrates the 
six input parameters considered in this 
study and their physical relationship with 
bead formation, providing a conceptual fra-
mework for the experimental procedure and 
fuzzy modeling approach.
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Figure 1. Diagram of the six key parameters of 
the MIG welding process.

The gas flow rate (GPH) protects the 
molten pool from atmospheric contamina-
tion. Excessive flow can cause turbulence, 
while insufficient flow increases the like-
lihood of porosity. The work angle (°) af-
fects the arc direction and thus influences 
both the penetration depth and the filler 
metal distribution along the joint. The wire 
feed speed (WFS) determines the amount 
of filler material deposited; higher values 
increase bead size but also raise the risk of 
overheating.

The arc voltage (Trim) regulates the 
total energy and effective length of the arc. 
Higher voltages generate longer and less pe-
netrating arcs, whereas lower voltages pro-
duce shorter and more stable arcs, leading to 
more uniform penetration. The travel speed 
(IPM) determines the heat input per unit 
length; higher speeds result in narrow beads 
with limited penetration, while lower speeds 
cause excessive heat input and material ac-
cumulation. Finally, the welding technique 
(push/pull) affects the thermal profile and 
geometry of the bead: the push technique 
produces wider and shallower beads, whe-
reas the pull technique promotes deeper 
penetration.

The base materials used were 
GMW3031 STSCR182 and ASTM A503 
steels, joined using a solid wire AWS A5.18 
ER70S-3 (ISO 14341 EN440 G2 SI 1) 
with a diameter of 0.035 inches. The shiel-
ding gas consisted of an Ar–CO₂ mixture 
with a flow rate maintained between 32 
and 38 GPH, ensuring proper protection 
of the molten pool and minimizing porosity 
formation.

Experimental Design

The experiments were conducted in an 
automated GMAW welding cell equipped 
with a three-axis programmable manipu-
lator, ensuring high precision, arc stability, 
and repeatability between trials. The experi-
mental objective was to analyze the influen-
ce of six operational parameters on the weld 
bead penetration, which was considered the 
main response variable.

A reduced factorial design (6²) was 
adopted to explore representative combina-
tions of parameter levels while maintaining 
an effective balance between experimental 
space coverage and efficiency in the number 
of runs. The parameters and levels conside-
red are summarized in Table 1.

Table 1. Experimental parameters and levels.

Input 
variable

Symbol Unit Mini-
mum 
level

Maxi-
mum level

Gas flow X₁ GPH 32 38
Work angle X₂ ° 41 49
Wire feed 

speed (WFS)
X₃ IPM 260 270

Voltage 
(Trim)

X₄ V 0.7 0.9

Travel speed X₅ IPM 29 32
Technique 

(Push–Pull)
X₆ — 1 (Pull) 2 (Push)
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Each experimental combination was 
evaluated by measuring the weld bead pe-
netration, obtained from metallographic 
cross-sections and optical analysis using a 
calibrated digital measurement system.

Interval Type-2 Fuzzy Logic System 
(IT2 FLS)

The IT2 FLS model was formulated to 
represent the nonlinear and uncertain rela-
tionships inherent to the GMAW process, 
considering as input variables the six para-
meters described in Table 1 (X₁–X₆) and 
a single output variable corresponding to 
weld bead penetration (Y). The system was 
structured to capture experimental variabili-
ty and to model the combined effects of wel-
ding parameters on the resulting response.

Each input variable was characterized 
by five membership functions (MFs) with 
the linguistic labels Very Low (VL), Low 
(L), Medium (M), High (H), and Very High 
(VH). Two trapezoidal functions were assig-
ned to the lower and upper extremes of the 
domain, while three triangular functions 
were used in the intermediate region, ensu-
ring continuous coverage of the universe of 
discourse and smooth transitions between 
adjacent levels.

Figure 2 shows the membership func-
tions corresponding to variable X₁ (gas 
flow), which are representative of the struc-
ture adopted for all input variables. This 
configuration accurately described the gra-
dual variability of each parameter and de-
fined the Footprint of Uncertainty (FOU) 
associated with the experimental dispersion 
observed in the welding process.
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Figure 2. Interval Type-2 membership functions 
for variable X₁ (Gas Flow).

The triangular membership function is 
defined according to Equation (1):

In an interval type-2 fuzzy logic sys-
tem, the membership degree of an element 
is not described by a single value but by 
an interval of membership bounded by 
an upper membership function  and a 
lower membership function . This con-
cept is formally expressed in Equation (2):

The region enclosed between these two 
functions represents the FOU, defined as:

The FOU constitutes the core of type-
2 reasoning, as it explicitly models the un-
certainty associated with the boundaries of 
the membership functions. In this study, the 
width of the FOU for each variable was es-
tablished proportionally to the experimental 
dispersion observed, enabling a more realis-
tic representation of welding conditions and 
their influence on penetration.
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The knowledge base was construc-
ted from the technical expertise of welding 
specialists and the analysis of experimental 
results. The fuzzy rules were formulated 
following the classical IF–THEN linguistic 
structure proposed by Zadeh. A representa-
tive example of a rule is:

The inference process followed the 
Mamdani approach, using min–max opera-
tors for rule activation and aggregation. Sub-
sequently, type-reduction was performed 
using the centroid of sets method to trans-
form the resulting type-2 sets into equiva-
lent type-1 sets. Finally, defuzzification was 
carried out using the centroid method, yiel-
ding a single numerical value corresponding 
to the predicted weld penetration.

This architecture allowed the IT2 FLS 
model to integrate experimental uncertain-
ty, process parameter variability, and expert 
knowledge coherently, providing a robust, 
continuous, and physically interpretable 
representation of the MIG welding process 
behavior.

Model Evaluation and Validation

The statistical evaluation of the model 
was performed through Analysis of Varian-
ce (ANOVA) and computation of the co-
efficient of determination (R²), in order to 
validate the overall significance of the model 
and its explanatory capacity regarding expe-
rimental variability.

The equations employed are expressed 
as follows:

The F-statistic was computed as:

and was compared with the critical 
F-value F (k, n - p) at a 95 % confidence le-
vel. A p-value < 0.05 was considered eviden-
ce of a statistically significant fit, confirming 
that at least one input variable exerts a re-
levant influence on weld bead penetration.

Thus, the IT2 FLS model not only cap-
tured the inherent uncertainty of welding 
parameters but also quantified their impact 
on the experimental response through sta-
tistically validated performance metrics.

Results and Discussion

An Analysis of Variance (ANOVA) 
was applied to evaluate the statistical signi-
ficance of the Interval Type-2 Fuzzy Logic 
System (IT2 FLS) model and to determi-
ne the influence of operational parameters 
on weld bead penetration. The results are 
summarized in Table 2, showing that the 
calculated value F0 = 5.73 exceeds the cri-
tical table value Ftablas = 3.37 at a 95% 
confidence level. Moreover, the value  
p = 0.0104 < 0.05 confirms the existence of 
a significant relationship between the input 
variables and the response, thereby rejecting 
the null hypothesis of independence.
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Table 2. ANOVA results for the IT2 FLS model.

Sourc e 
of va-
riation

Sum of 
squares

df Mean 
squares

F₀ F 
table

p-value

Model 1.3717 6 0.2286 5.726 3.374 0.0104
Residual 0.3593 9 0.0399 – – –
Total 1.5998 15 – – – –

The model sum of squares (SSMod = 
1.37) represents 85.7% of the total variation  
(SSTot = 1.60), which demonstrates good fit-
ting capability. In contrast, the residual sum 
of squares (SSRes = 0.36) indicates that the 
dispersion of errors between experimental 
and predicted values is moderate and shows 
no evidence of lack of fit. The ratio between 
the model and residual mean squares (MS-
Mod/MSRes = 5.73) reflects a substantial effect 
size, confirming that the model is not only 
statistically significant but also practically 
relevant for predicting process behavior.

The coefficient of determination obtai-
ned was R2 = 0.8640, meaning that the mo-
del explains 86.4% of the total variability in 
the experimental data. This value indicates a 
strong relationship between the input varia-
bles and the predicted response, validating 
the fuzzy system’s structure. The remaining 
13.6% is attributed to experimental noise 
and interaction effects not captured by the 
rule base.

Residual analysis revealed a random 
distribution around the mean with no sys-
tematic patterns, supporting the statistical 
validity of the fit and the consistency of 
the model. This behavior indicates that the 
designed rules and membership functions 
successfully represented the relationship be-
tween welding parameters and weld bead 
penetration, even under conditions of expe-
rimental uncertainty.

Overall, the ANOVA and R2 results 
indicate that the IT2 FLS model achieves 
an appropriate balance between accuracy 
and generalization. Its stability under small 
variations in input parameters is attributed 
to the Footprint of Uncertainty (FOU), whi-
ch enables a realistic representation of the 
inherent uncertainty of the MIG process. 
This behavior, distinct from conventional li-
near models, demonstrates the capability of 
the IT2 FLS to describe process variability 
and predict weld penetration. Furthermo-
re, its adaptability under changing process 
conditions suggests favorable potential for 
integration into adaptive control systems 
designed to maintain arc stability and weld 
quality without requiring constant operator 
intervention.

Conclusions

The Interval Type-2 Fuzzy Logic Sys-
tem (IT2 FLS) model applied to the MIG 
welding process proved to be an effective 
tool for representing and predicting weld 
bead penetration and overall weld quality 
under uncertain conditions. Its formula-
tion, based on six input variables associated 
with process parameters, successfully captu-
red the nonlinear behavior and inherent va-
riability of welding with statistically verified 
accuracy.

The Analysis of Variance (ANOVA) 
confirmed the statistical significance of the 
model with a p-value of 0.0104 < 0.05, 
while the coefficient of determination R² = 
0.8640 indicated that it explained 86.4% 
of the total experimental variability. These 
results validate the relationship between the 
input parameters and the fuzzy response, 
demonstrating the IT2 FLS’s ability to ac-
curately estimate weld bead penetration.
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The type-2 fuzzy logic approach ex-
plicitly incorporated uncertainty into the 
membership functions, yielding a model 
robust to data dispersion and experimental 
noise. Unlike deterministic or linear appro-
aches, the interval fuzzy system provided the 
flexibility to represent multivariable rela-
tionships without imposing rigid functional 
constraints, thus reproducing the physical 
behavior of the MIG process with greater 
realism.

From an industrial perspective, the 
IT2 FLS model constitutes a solid founda-
tion for developing intelligent welding con-
trol systems. Its modular structure and lin-
guistic interpretability facilitate integration 
into automated welding cells, where it could 
be employed to adjust critical variables such 
as voltage, gas flow, and travel speed, con-
tributing to more uniform penetration and 
greater process stability.

Finally, it is recommended to valida-
te the model under industrial production 
conditions to assess its performance in real 
environments, taking into account factors 
such as thermal variations, differences in 
consumables, and environmental changes. 
It is also suggested to explore optimization 
through evolutionary algorithms such as 
Particle Swarm Optimization (PSO) or Ge-
netic Algorithms (GA) to fine-tune mem-
bership function parameters and fuzzy rule 
weights. Integrating these techniques with 
the IT2 FLS model could lead to the deve-
lopment of more adaptive and reliable con-
trol systems for welding processes subject to 
high levels of uncertainty.
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