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Abstract: This article presents the assess-
ment of the operational safety of a dynamic 
system using a Markov process. Characte-
ristic parameters such as MTTF, MTTR, 
and system availability are obtained. Based 
on the hybrid stochastic automaton that 
models the temperature control system of 
an oven, its normal operating states and 
failure states are merged to obtain the 
Markov graph. Failure and repair rates are 
used, as well as the probabilities of being in 
a good operating state or a failure state. The 
results were compared with those obtained 
by Monte Carlo simulation of the hybrid 
stochastic automaton and were satisfactory.

Keywords — Markov process, hybrid sto-
chastic automaton, exponential law, reliabi-
lity, operational safety. 

Introduction

Since humans invented the first instru-
ments, they have become more dependent 
on their functioning. In this sense, the 
concept of reliability was born. Likewise, 
with the advent of electronics, reliability 
entered a new era. However, reliability as 
a subject of systematic study began in the 
1960s. Reliability is a popular concept that 
has been used for years as a commendable 
attribute of a person or an object. The Ox-
ford English Dictionary defines reliability 
as the quality of an entity to be dependab-
le, on which one can count at a given mo-
ment, in which trust can be placed. In En-
glish, “reliability” comes from “to rely on,” 
meaning “to count on, to have confidence 
in...” while reliability in French effectively 
comes from the word “fiable,” meaning 
“one who can be trusted. In 1962, the 
Academy of Sciences defined it as follows: 
a parameter that characterizes the safety of 
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operation, or a measure of the probabili-
ty of operation of equipment according to 
prescribed standards. Later, in the 1970s, 
the International Electrotechnical Com-
mittee proposed the following definition: 
characteristic of a device, expressed by re-
liability, which fulfills a required function, 
under given conditions, for a given dura-
tion (Pagès and Gondran, 1980). (Laprie 
et al., 1995) define reliability as a measure 
of the continuity of the delivery of a cor-
rect service or, equivalently, a measure of 
the time to failure. (CEI 50 (191), 1990) 
and (Villemeur, 1988) state that reliabili-
ty is the ability of an entity to perform a 
required function under given conditions 
for a given time. This ability is measured 
(Smith, 2001) by the probability that an 
entity will perform a required function 
under given conditions for a given period 
of time. Reliability can be paraphrased as 
the probability of the entity not failing in 
a given period of time. Below are some of 
the methods that have been developed to 
evaluate the reliability of an entity or sys-
tem. 

Methods for evaluating 
predictive reliability 

The first type of methods used in pre-
dictive reliability theory brings together 
combinatorial methods. These are used 
to identify and evaluate the combinations 
of component failures that cause the sys-
tem to fail. This group includes fault trees, 
event trees, reliability diagrams, and struc-
ture functions (Kaufman et al., 1975). A 
second type of method is based on a re-
presentation of the system’s state, in whi-
ch transitions correspond to a component 
failure or repair. Under certain conditions, 
these models are Markovian (or semi-

-Markovian) and allow access to the pro-
bability of staying in each of the states. The 
probability of being in one of the operating 
states is the availability of the system. To 
evaluate reliability, it is advisable to modify 
the model by making the shutdown states 
absorbing (in which there is no repair). 

Markov methods and processes

Markov models represent a class of 
stochastic processes. A stochastic process 
describes the evolution of a system by the 
probabilities that it will be in a given state 
(or subset of states) at a given moment. A 
Markov process is also a stochastic process 
in which the future state does not depend 
on the past trajectory. It is homogeneous 
when the transition rates between states do 
not depend on time. When the process is 
defined continuously in time, it is repre-
sented by a state graph called a Markov 
graph. When the process only describes 
certain discrete moments, it is referred to 
as a Markov chain. Through misuse of lan-
guage, the latter term is sometimes used 
for continuous-time models. The latter are 
used to quantitatively evaluate the opera-
tional safety of systems, especially when 
the transition rates are constant, i.e., the 
failure and repair times of components are 
distributed according to exponential laws 
(Cocozza-Thivent, 1997). 

It is assumed that the transition from 
one state of the system to another occurs 
randomly due to the failure of one com-
ponent or the repair of another element. 
Knowing the initial state of the system, it 
is possible to deduce either the probability 
of being in a given state after a certain du-
ration or the average probability of being 
in a given state throughout its useful life.

Markovian processes are frequently 
used, as already mentioned, to study the 
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operational safety of systems, especially 
when dealing with repairable systems. A 
stochastic process is defined as the set of 
random variables Z(t), defined in the given 
probability space and indexed by a parame-
ter t belonging to a set T:

{Z(t), t T}                            (1)

In practice, T represents space-time. 
It can be discrete or continuous. The va-
riables Z(t) take their values from a set X 
consisting of all possible states of the sys-
tem. This is the state space, which can be 
discrete or continuous independently of T. 
A stochastic process is perfectly defined by 
the following data:

The domain Z of the random variables,
The domain T of the parameter t,
the statistical relationships between Z(t) 

for different values of t defined by:

Fz(t) = Pr         [Z(t1) z1; …;      Z(tn) Zn] Z = (z1,
…,zn),          t = (t1,…,tn), n	 (2)

Markov processes are memoryless pro-
cesses (the transition probability depends 
only on the current state), i.e., at each 
instant, the time remaining to be spent 
in the current state is independent of the 
time already elapsed. The only continuous 
distribution that verifies this hypothesis 
is the exponential distribution. On the 
other hand, semi-Markovian processes are 
processes that follow general distributions 
(Brinzei, 2003), (Cocozza-Thivent, 1997) 
and (Niel and Craye, 2002). 

Markov processes

A stochastic process is said to be Marko-
vian if:

t = (t1, …, tn, tn+1);

such that t(1)< t(2)< … < t(n)< t(n+1)

thus
Pr[Z(tn+1) = zn+1/Z(tn) = zn; Z(tn-1) = zn-1; …  ;

Z(t(1)  )=z(1)  ]= Pr [Z(t(n+1)  )= z(n+1)  /X(t) = z(n)  ]   (3)

Thus, a Markovian process is a me-
moryless process. Knowledge of the state at 
times t(1)<t(2)<…<t(n)<t(n+1)is information 
that is completely contained in knowledge 
of the state at time t(n)+1. In other words, 
the future evolution of the process depends 
only on the state at the present moment, 
and not on past evolution.

The probability vector P of being in a 
state at time t is the solution to the Cha-
pman-Kolmogorov equation:

          (4)

where A is the transition matrix betwe-
en the states of the system:

(5)

and aij .dt is the probability of moving 
from state Zi  to state Zj  between t and 
t+dt, knowing that at time t the system is 
in state Zi .

A Markov process can be represented 
graphically by a state-transition model cal-
led a Markov graph (Schoenig, 2004). 
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Oven temperature 
control system

As can be seen in Figure 1, the system con-
sists of two loops. The first contains a PI (pro-
portional and integral) controller whose role is 
to maintain the oven temperature at a referen-
ce temperature value. The second loop is of the 
All-or-Nothing (TON) type. This allows the 
oven temperature to be maintained around the 
reference temperature by switching from full 
thermal power to zero power. These two loops 
cannot operate simultaneously. For this purpo-
se, a relay switches the two contacts, activating 
either the PI or the TON. The command to 
switch from one to the other is given by the de-
tection system, whose role is to identify faults 
and repairs and react by switching from one 
regulator to the other. Initially, the tempera-
ture is controlled by the PI controller. After a 
random period of time, the controller fails and 
the oven temperature rises rapidly. The detec-
tion system detects that the temperature has re-
ached a dangerous value and deduces that the 
oven is out of control. The detection system 
gives the switch command to the relay to the 
TON controller loop. The oven temperature 

is now controlled by this controller. As soon 
as the detection system has detected that the 
temperature is out of control, it also initiates 
the PI controller repair process (the repair is 
a random time). However, the possibility of 
TON failure exists.

Figure 1. Oven temperature control system.

Once the PI controller is repaired, the 
detection system switches the relay to the 
PI loop, which now controls the oven 
temperature. The oven is considered to be 
functioning properly.

 

Figure 2. Hybrid stochastic automaton of the behavior of the temperature control system.
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Evaluation of the operational 
safety of a system using 
the Markov process

Figure 2 shows the Hybrid Stochas-
tic Automaton (Pérez et al., 2011) of the 
system presented above. It consists of 
nine discrete states and one continuous 
state variable: temperature. The automa-
ton takes into account the deterministic 
behavior of the system described by the 
controllers and the stochastic behavior 
due to its failures and repairs. This au-
tomaton is constructed from embryonic 
finite state automata in order to take into 
account all the behaviors and transitions 
of the system. Synchronization is applied 
to these automata, thus obtaining the 
hybrid stochastic automaton.

The hybrid stochastic automaton in 
Figure 2, of the temperature control sys-
tem of an oven, does not correspond to a 
Markov process. This is because the hybrid 
stochastic automaton models a dynamic 
system which has deterministic transitions 
that do not depend solely on an exponen-
tial distribution or on the time elapsed sin-
ce arrival in the respective state. However, 
the hybrid stochastic automaton of the sys-
tem has been approximated to a Markov 
process and a semi-Markovian process in 
order to compare and estimate the results 
obtained numerically by simulation with 
the analytical results provided by these me-
thods. For this modification, the determi-
nistic transitions have been removed from 
the hybrid stochastic automaton by mer-
ging the final discrete states with the source 
states of these transitions. Figure 3 shows 
the resulting state automaton, also known 
as a Markov graph. 

Figure 3. Markov graph equivalent to transition 
matrix A.

States 1, 2, and 3 are the states of proper 
system operation:

- state 1: the PI controller controls the 
oven temperature. The TON control-
ler is inactive,

- state 2: the PI controller fails and the 
TON controller now controls the oven 
temperature. Repair of the PI control-
ler or failure of the TON controller 
may occur. 

- Status 3: The PI controller has been 
repaired and is now active, but the 
TON controller is still faulty.

- State 4: The PI and TON controllers 
are in fault and are being repaired. The 
system is in total failure. 

The transition matrix of the Markov 
graph in Figure 3 is given by the following 
equation:

      (6)

We are interested in determining the 
MTTF (Mean Time to Failure), the avai-
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lability, and the MTTR (Mean Time to 
Repair) of the system expressed by the 
Markov graph in Figure 3. By integra-
ting the reliability R(t) of the system, we 
can deduce the MTTF (Niel and Craye, 
2002). However, there is a more practical 
way to obtain the same parameter (Cora-
zza, 1975), (Osaki, 2002). The transition 
matrix (6) is divided according to the states 
of good operation and the states of failure. 
That is, the first three columns correspond 
to the good functioning states 1, 2, and 3 
of the Markov graph in Figure 3. The last 
column corresponds to the system failure 
state. The submatrix G(11)represents the 
good functioning states, while the matrix 
G(22)corresponds to the failure state. 

       (7)

(8)	

Thus, the MTTF is determined by 
equation (9):

   (9)

where PFis the probability vector of the 
good functioning states, G11is the subma-
trix of the transition indices between good 
functioning states. 1nfis the sum vector of 
all functioning states, in this case nf = 3.

The MTTR is determined by equation 
(10):

        (10)

with PD  being the probability vector 
of the failure state. G22  is the submatrix 
of transition indices between failure states, 
and 1nd corresponds to the failure states.

Results

The values of the failure and repair in-
dices for the PI and TON controllers are 
as follows: 

lPI= 13·10(-05) h(-1) (1);l (TO)(N) = 8·10(-05) 
h(-1);m (PI) = 21·10(-03) h(-1);m(TO) (N)= 14·10(-03) h(-1)

Applying the above equations, we ob-
tain:

System availability is determined by 
equation (11):

          (11)

The matrix is obtained by replacing 
the last column of matrix A with 1 . is 
the vector of asymptotic probabilities of 
these in each of the states.

The following asymptotic probabilities 
are obtained.

(1) Availability is the sum of the proba-
bilities for the system to be in one of the 
operating states. 
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Therefore, the asymptotic availability = 
99.99867%. The results obtained (Table 1) 
show that the approximate Markov proces-
ses provide a good approximation to those 
obtained by the hybrid stochastic automa-
ton (HSA) (Pérez et al., 2011).

Parameter HSA
Markov 
process

Availability 99.999 99.99867%

MTTF
2.056·10(6)   

h
2.039·10(6)   h

MTTR 28.26 h 28.57 h

Table 1. Results obtained with the AEH and by 
Markov process.

Conclusions

The results obtained show the efficien-
cy of the Markov process in dealing with 
this type of system by approximating them 
through the fusion of discrete states, on the 
one hand, of good operation and, on the 
other, of failure of a hybrid stochastic auto-
maton that models dynamic systems. The 
results obtained by the hybrid stochastic 
automaton through a Monte Carlo simu-
lation and by Markov processes show an 
acceptable approximation. In fact, the re-
sults obtained by Markov are more conser-
vative. For non-complex dynamic systems, 
it is recommended to use Markov proces-
ses. These results will allow the analysis of 
preventive maintenance programs and the 
implementation of measures to prevent 
unexpected failures in the system.
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