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Abstract: This article presents the assess-
ment of the operational safety of a dynamic
system using a Markov process. Characte-
ristic parameters such as MTTE MTTR,
and system availability are obtained. Based
on the hybrid stochastic automaton that
models the temperature control system of
an oven, its normal operating states and
failure states are merged to obtain the
Markov graph. Failure and repair rates are
used, as well as the probabilities of being in
a good operating state or a failure state. The
results were compared with those obtained
by Monte Carlo simulation of the hybrid
stochastic automaton and were satisfactory.

Keywords — Markov process, hybrid sto-
chastic automaton, exponential law, reliabi-
lity, operational safety.

Introduction

Since humans invented the first instru-
ments, they have become more dependent
on their functioning. In this sense, the
concept of reliability was born. Likewise,
with the advent of electronics, reliability
entered a new era. However, reliability as
a subject of systematic study began in the
1960s. Reliability is a popular concept that
has been used for years as a commendable
attribute of a person or an object. The Ox-
ford English Dictionary defines reliability
as the quality of an entity to be dependab-
le, on which one can count at a given mo-
ment, in which trust can be placed. In En-
glish, “reliability” comes from “to rely on,”
meaning “to count on, to have confidence
in...” while reliability in French effectively
comes from the word “fiable,” meaning
“one who can be trusted. In 1962, the
Academy of Sciences defined it as follows:
a parameter that characterizes the safety of
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operation, or a measure of the probabili-
ty of operation of equipment according to
prescribed standards. Later, in the 1970s,
the International Electrotechnical Com-
mittee proposed the following definition:
characteristic of a device, expressed by re-
liability, which fulfills a required function,
under given conditions, for a given dura-
tion (Pages and Gondran, 1980). (Laprie
et al., 1995) define reliability as a measure
of the continuity of the delivery of a cor-
rect service or, equivalently, a measure of
the time to failure. (CEI 50 (191), 1990)
and (Villemeur, 1988) state that reliabili-
ty is the ability of an entity to perform a
required function under given conditions
for a given time. This ability is measured
(Smith, 2001) by the probability that an
entity will perform a required function
under given conditions for a given period
of time. Reliability can be paraphrased as
the probability of the entity not failing in
a given period of time. Below are some of
the methods that have been developed to
evaluate the reliability of an entity or sys-
tem.

Methods for evaluating
predictive reliability

The first type of methods used in pre-
dictive reliability theory brings together
combinatorial methods. These are used
to identify and evaluate the combinations
of component failures that cause the sys-
tem to fail. This group includes fault trees,
event trees, reliability diagrams, and struc-
ture functions (Kaufman ez 4/, 1975). A
second type of method is based on a re-
presentation of the system’s state, in whi-
ch transitions correspond to a component
failure or repair. Under certain conditions,
these models are Markovian (or semi-
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-Markovian) and allow access to the pro-
bability of staying in each of the states. The
probability of being in one of the operating
states is the availability of the system. To
evaluate reliability, it is advisable to modify
the model by making the shutdown states
absorbing (in which there is no repair).

Markov methods and processes

Markov models represent a class of
stochastic processes. A stochastic process
describes the evolution of a system by the
probabilities that it will be in a given state
(or subset of states) at a given moment. A
Markov process is also a stochastic process
in which the future state does not depend
on the past trajectory. It is homogeneous
when the transition rates between states do
not depend on time. When the process is
defined continuously in time, it is repre-
sented by a state graph called a Markov
graph. When the process only describes
certain discrete moments, it is referred to
as a Markov chain. Through misuse of lan-
guage, the latter term is sometimes used
for continuous-time models. The latter are
used to quantitatively evaluate the opera-
tional safety of systems, especially when
the transition rates are constant, i.e., the
failure and repair times of components are
distributed according to exponential laws
(Cocozza-Thivent, 1997).

It is assumed that the transition from
one state of the system to another occurs
randomly due to the failure of one com-
ponent or the repair of another element.
Knowing the initial state of the system, it
is possible to deduce either the probability
of being in a given state after a certain du-
ration or the average probability of being
in a given state throughout its useful life.

Markovian processes are frequently
used, as already mentioned, to study the
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operational safety of systems, especially
when dealing with repairable systems. A
stochastic process is defined as the set of
random variables Z(#), defined in the given
probability space and indexed by a parame-
ter ¢ belonging to a set T:

{Z(0), t T} (1)

In practice, T represents space-time.
It can be discrete or continuous. The va-
riables Z(#) take their values from a set X
consisting of all possible states of the sys-
tem. This is the state space, which can be
discrete or continuous independently of T.
A stochastic process is perfectly defined by
the following data:

The domain Z of the random variables,

The domain T of the parameter 7,

the statistical relationships between Z(#)
for different values of 7 defined by:

Fz(t) = Pr
...,zn),

[Z(t) 2.5 Z()Z]Z=(z
t= (.t ), 0 @)

It

Markov processes are memoryless pro-
cesses (the transition probability depends
only on the current state), i.e., at each
instant, the time remaining to be spent
in the current state is independent of the
time already elapsed. The only continuous
distribution that verifies this hypothesis
is the exponential distribution. On the
other hand, semi-Markovian processes are
processes that follow general distributions
(Brinzei, 2003), (Cocozza-Thivent, 1997)
and (Niel and Craye, 2002).

Markov processes

A stochastic process is said to be Marko-
vian if:
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Vt: (tl’ (XX$) tn’ tn+1)’.

such

that t(u< (<. < t(n)< t(

n+l)

thus
PrZ(t )=z [Z2(t)=2;7(t )=z

ettt

Z((1, =2(1, = Pr[Z(K(,,,, = 2(,,, O =20, (3)

Thus, a Markovian process is a me-
moryless process. Knowledge of the state at
times t(, <z 2)<...<t(n)<t(m1)is information
that is completely contained in knowledge
of the state at time t(n)+ 1. In other words,
the future evolution of the process depends
only on the state at the present moment,
and not on past evolution.

The probability vector P of being in a
state at time 7 is the solution to the Cha-
pman-Kolmogorov equation:

P(f) = P(t).4 (4)

where A is the transition matrix betwe-
en the states of the system:

1
'2“;;' a2 . 4 < A
2
i
4y - 2 ay - . ©
J=1j'2
[4]= \
a] - 2 ajj Ay
JEL
n-1
a,y a.s . . . = dm;
=1

(5)

and «_ .dt is the probability of moving
i
from state Z to state Z] between # and
t+dt, knowing that at time # the system is
in state Zl .
A Markov process can be represented
graphically by a state-transition model cal-

led a Markov graph (Schoenig, 2004).
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Oven temperature
control system

As can be seen in Figure 1, the system con-
sists of two loops. The first contains a PI (pro-
portional and integral) controller whose role is
to maintain the oven temperature at a referen-
ce temperature value. The second loop is of the
All-or-Nothing (TON) type. This allows the
oven temperature to be maintained around the
reference temperature by switching from full
thermal power to zero power. These two loops
cannot operate simultaneously. For this purpo-
se, a relay switches the two contacts, activating
either the PI or the TON. The command to
switch from one to the other is given by the de-
tection system, whose role is to identify faults
and repairs and react by switching from one
regulator to the other. Initially, the tempera-
ture is controlled by the PI controller. After a
random period of time, the controller fails and
the oven temperature rises rapidly. The detec-
tion system detects that the temperature has re-
ached a dangerous value and deduces that the
oven is out of control. The detection system
gives the switch command to the relay to the

TON controller loop. The oven temperature

is now controlled by this controller. As soon
as the detection system has detected that the
temperature is out of control, it also initiates
the PI controller repair process (the repair is
a random time). However, the possibility of
TON failure exists.

deteccion | <

Controlader
TON

Teet Controlador —Pl Amplificador
+ F Relé
1 =T e

Figure 1. Oven temperature control system.

Once the PI controller is repaired, the
detection system switches the relay to the
PI loop, which now controls the oven
temperature. The oven is considered to be

functioning properly.
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Figure 2. Hybrid stochastic automaton of the behavior of the temperature control system.
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Evaluation of the operational
safety of a system using
the Markov process

Figure 2 shows the Hybrid Stochas-
tic Automaton (Pérez et al., 2011) of the
system presented above. It consists of
nine discrete states and one continuous
state variable: temperature. The automa-
ton takes into account the deterministic
behavior of the system described by the
controllers and the stochastic behavior
due to its failures and repairs. This au-
tomaton is constructed from embryonic
finite state automata in order to take into
account all the behaviors and transitions
of the system. Synchronization is applied
to these automata, thus obtaining the
hybrid stochastic automaton.

The hybrid stochastic automaton in
Figure 2, of the temperature control sys-
tem of an oven, does not correspond to a
Markov process. This is because the hybrid
stochastic automaton models a dynamic
system which has deterministic transitions
that do not depend solely on an exponen-
tial distribution or on the time elapsed sin-
ce arrival in the respective state. However,
the hybrid stochastic automaton of the sys-
tem has been approximated to a Markov
process and a semi-Markovian process in
order to compare and estimate the results
obtained numerically by simulation with
the analytical results provided by these me-
thods. For this modification, the determi-
nistic transitions have been removed from
the hybrid stochastic automaton by mer-
ging the final discrete states with the source
states of these transitions. Figure 3 shows
the resulting state automaton, also known

as a Markov graph.
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Figure 3. Markov graph equivalent to transition
matrix A.

States 1, 2, and 3 are the states of proper
system operation:

- state 1: the PI controller controls the
oven temperature. The TON control-
ler is inactive,

- state 2: the PI controller fails and the
TON controller now controls the oven
temperature. Repair of the PI control-
ler or failure of the TON controller
may occur.

- Status 3: The PI controller has been
repaired and is now active, but the

TON controller is still faulty.
- State 4: The PI and TON controllers

are in fault and are being repaired. The
system is in total failure.

The transition matrix of the Markov
graph in Figure 3 is given by the following

equation:
’kw }‘Pﬁ 0 0
A= My _(l‘I‘F.‘ +A'TGR} 0 ;"TGR
Hror 0 ~(Upop +hps) Ay
0 Mror Wy = (Mg + Mrop)

(6)

We are interested in determining the

MTTF (Mean Time to Failure), the avai-
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lability, and the MTTR (Mean Time to
Repair) of the system expressed by the
Markov graph in Figure 3. By integra-
ting the reliability R(#) of the system, we
can deduce the MTTF (Niel and Craye,
2002). However, there is a more practical
way to obtain the same parameter (Cora-
zza, 1975), (Osaki, 2002). The transition
matrix (6) is divided according to the states
of good operation and the states of failure.
That is, the first three columns correspond
to the good functioning states 1, 2, and 3
of the Markov graph in Figure 3. The last
column corresponds to the system failure
state. The submatrix G(,,
good functioning states, while the matrix

G(

represents the

22>corresponcls to the failure state.

_}"H ;".Pr
G]] =ty Uy +}"TUR) 0
Kror 0 ~(Wror +hpp)

™)

Gy, =['(:“m + Hrop )] (8)

Thus, the MTTF is determined by
equation (9):

P (OV-G
MTTF = P,(0).(-G,,)" 1,, o)
where P_is the probability vector of the
good functioning states, G,,is the subma-
trix of the transition indices between good
functioning states. 1_is the sum vector of
all functioning states, in this case nf = 3.

The MTTR is determined by equation
(10):

MTTR =P, (0).(-G,,) "1, (10)
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with P being the probability vector
of the failure state. G,, is the submatrix
of transition indices between failure states,
and 1nd corresponds to the failure states.

Results

The values of the failure and repair in-
dices for the PI and TON controllers are
as follows:

1= 13-10(-05) h(-1) (1); (TO)(N) = 8-10(-05)

_ . — 21-10(-03) h(-1); — -10(-03) h(-1)
h(-1);m (PI) = m ) o= 14

Applying the above equations, we ob-
tain:

_ Ap+ Arop iy

~2.039-10(6) h
API ATOR ( )

1

MTTR=——— =
o+ Hrop 28 57 )

System availability is determined by
equation (11):

I1=[0,0,0,1].45! (11)

The matrix A;ll is obtained by replacing
the last column of matrix 4 with 1]]. is
the vector of asymptotic probabilities of
these in each of the states.

The following asymptotic probabilities
are obtained.

I1= [0.99382664237564 0.00613828172876

0.00002096765749 0.0000141082381 1]

(1) Availability is the sum of the proba-
bilities for the system to be in one of the
operating states.
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Therefore, the asymptotic availability =
99.99867%. The results obtained (Table 1)
show that the approximate Markov proces-
ses provide a good approximation to those
obtained by the hybrid stochastic automa-
ton (HSA) (Pérez et al., 2011).

Markov
Parameter HSA
process
Availability 99.999 99.99867%
2.056-10(6)
MTTE b 2.039-10(6) h
MTTR 28.26 h 28.57 h

Table 1. Results obtained with the AEH and by
Markov process.

Conclusions

The results obtained show the efficien-
cy of the Markov process in dealing with
this type of system by approximating them
through the fusion of discrete states, on the
one hand, of good operation and, on the
other, of failure of a hybrid stochastic auto-
maton that models dynamic systems. The
results obtained by the hybrid stochastic
automaton through a Monte Carlo simu-
lation and by Markov processes show an
acceptable approximation. In fact, the re-
sults obtained by Markov are more conser-
vative. For non-complex dynamic systems,
it is recommended to use Markov proces-
ses. These results will allow the analysis of
preventive maintenance programs and the
implementation of measures to prevent
unexpected failures in the system.
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