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Abstract: This study presents the application 
of intelligent control techniques to an in-
dustrial mixing process. The proposed con-
troller designed based on a Hebbian adap-
tation of the Fuzzy Cognitive Map (FCM) 
learning mechanism, which results in a Dy-
namic Fuzzy Cognitive Map (DFCM) mo-
del. The research develops and validates this 
DFCM using Hebbian learning algorithms 
to improve adaptability and robustness in 
nonlinear industrial systems. To ensure re-
liability, a classical fuzzy controller and a 
standard Proportional-Integral-Derivati-
ve (PID) controller implemented as ben-
chmarks to validate the simulation results of 
the DFCM-based control for the industrial 
mixer. Extensive simulation experiments 
conducted to compare the performance 
of the controllers. The results demonstrate 
that the proposed DFCM provides superior 
performance in adaptability and robustness 
compared to the benchmarks, while also su-
ggesting low computational complexity for 
practical implementation.

Keywords: Fuzzy Cognitive Maps, Heb-
bian Learning, Process Control, Fuzzy Lo-
gic, Artificial Neural Network.

INTRODUCTION

In general, some of the difficulties fou-
nd in acquiring knowledge in different areas 
of engineering (such as robotics, Control or 
process control) are: how to recognize the 
processes /systems; how to identify impor-
tant variables and parameters; to classify 
the type of physical problem; o identify the 
family of mathematical models that can be 
associated; to select the method and/or tool 
for the search and analysis of the model. 

Indeed, the final output of modern 
processes significantly influenced by the 

selection of the set points for the process 
variables, as they fundamentally impact 
product quality characteristics and process 
performance metrics (Marchal; García; Or-
tega, 2017).

This work serves as a direct evolution 
of the study presented by Mendonça et al. 
(2017). While the previous work established 
and validated the DFCM (Dynamic Fuzzy 
Cognitive Map) controller, the proposal of 
this new article is to significantly expand 
that analysis. The main contributions of this 
evolution are: (1) the introduction of a Ge-
netic Algorithm (GA) for the offline optimi-
zation of the controller’s initial weights, and 
(2) a more robust benchmarking analysis, 
comparing the DFCM’s performance not 
only against Fuzzy-ANN controllers but 
also notably against a classic Proportional-
-Integral-Derivative (PID) controller, which 
serves as a standard industrial benchmark

The article proposal is to use a diffe-
rent setup, specifically the initial state and 
a comparison with a new controller using 
Fuzzy-Logic with ANN (artificial neural 
network). The motivation for this research 
is the development of optimal control the-
ory, robust Control, and adaptive Control, 
which significantly expands the automation 
concept and studies the feasibility of auto-
nomous Control in practice. 

On the other hand, intelligent con-
trol techniques take control actions without 
depending on a complete or partial mathe-
matical model. Otherwise, the ability of a 
human to find solutions to a particular pro-
blem is known as human intelligence. In 
short, human beings can manage complex 
processes based on inaccurate and/or appro-
ximate information. The strategy adopted 
by them is also imprecise in nature and can 
usually expressed in linguistic terms. Thus, 
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by means of Fuzzy Logic concepts, it is pos-
sible to model this type of information (Za-
deh, 1992).

Previous works that used Fuzzy tech-
niques can cited, such as Fabro and Arruda 
(2003), which applies a Fuzzy-Neuro pre-
dictive control tuned by Genetic Algorithms 
(GA) on a fermentation process. A Propor-
tional Derivative Fuzzy Logic Controller 
(Fuzzy-PD) initially used to control the pro-
cess, a nonlinear system with non-minimal 
phase and ample accommodation time.

More recently, Yesil, Kumbasar and 
Karasakal (2013) presented an FCM used 
to tune the parameters of PI controllers on a 
nonlinear system. These controllers cannot 
achieve satisfactory results in this type of 
system due to the difference in their static 
and dynamic properties.

There is also Mendonça et al. (2012), 
where new types of concepts and relations, 
not restricted to cause-effect ones, added 
to the model, resulting in a dynamic fuzzy 
cognitive map (DFCM). In this sense, a su-
pervisory system developed to control the 
fermentation process.

BACKGROUND

Fuzzy Cognitive Maps (FCM) intro-
duced by Kosko’s work, which added Fuzzy 
values to the causal relationships of Axelrod’s 
Cognitive Maps paper. In fact, FCMs are 
system models that represent a graph form, 
where the nodes represent concepts related 
to the problem, and the lines connecting 
them represent the causal relationships be-
tween these concepts. An FCM is a 4-tuple, 
as described in works as Stach et al. (2005) 
and Arruda et al. (2016). It is used to stu-
dy the dynamics of systems due to its ma-

thematical simplicity. The relationship’s in-
fluence is calculated using normalized states 
and matrix multiplications. 

The system’s dynamics may converge 
into a steady state, a limit cycle of states, or 
even a chaotic state Kosko (1992) and Lee 
(2003). Every concept’s activation level is 
based on its own previous iteration and the 
propagated weighted values of all the con-
cepts connected to it (it means all concepts 
that influence it). 

In the literature, numerous examples 
of FCMs exist that utilize monotonic and 
symmetric cause-and-effect relationships 
between concepts. Although these rela-
tionships may be effective in controlled 
environments, they cannot apply in the 
real world due to their dynamic aspects. To 
bring FCMs to more realistic environments, 
several techniques can be employed, such as 
using Fuzzy rules and feedback mechanis-
ms Carvalho and Tome (2009) or algebraic 
equations to define causal relationships 
when the real system has modeled using 
crisp relations Aguilar (2004).

In general, a Fuzzy Cognitive Map 
(FCM) is a tool for modeling human know-
ledge and understanding. It can obtain 
through linguistic terms inherent to Fuzzy 
Systems, which have a structure like Arti-
ficial Neural Networks (ANN), facilitating 
data processing and enabling capabilities for 
training and adaptation. FCM is a techni-
que based on knowledge that inherits cha-
racteristics of Cognitive Maps and Artificial 
Neural Networks (Kosko, 1986; Kosko 
1992), with applications in different areas 
of knowledge (Lee, 2003; Mendonça et al., 
2017). 

In addition to the advantages and cha-
racteristics inherited from these primary te-
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chniques, FCM initially proposed as a tool 
for building models or cognitive maps in va-
rious fields of knowledge. It makes the tool 
easier to abstract the information necessary 
for modeling complex systems, which are 
similar in construction to human reasoning. 

Dynamic Fuzzy Cognitive Maps 
(DFCM) need to develop into a model that 
can manage the behaviors of nonlinear, ti-
me-dependent systems, and sometimes in 
real-time. Examples of different variations 
of the classic FCMs can found in recent lite-
rature, e.g., (Papageorgiou, 2013).

This paper has two objectives. The first 
objective is to develop two controllers using 
an acyclic DFCM, with the same knowled-
ge as a Fuzzy and Fuzzy Neural controller, 
and with similar heuristics, thus producing 
comparable simulated results. 

To achieve the goals, we initially used 
a similar DFCM proposed initially in Men-
donça et al. (2013) to control an industrial 
mixing tank. The Hebbian algorithm used 
to dynamically adapt the DFCM weights. 
To validate the DFCM controller, its perfor-
mance compared with that of a Fuzzy Lo-
gic controller. This comparison conducted 
using simulated data.

Previous work by Mendonça et al. 
(2013) applied a DFCM to this same indus-
trial mixer problem, laying the groundwork 
for the present study. In that approach, the 
controller’s initial weights optimized using 
Simulated Annealing, and dynamic adapta-
tion explored using both Hebbian Learning 
and a rule-based selection mechanism (DT-
-FCM). This paper builds upon that foun-
dation by introducing a Genetic Algorithm 
(GA) for offline optimization and focusing 
on a refined Hebbian algorithm for dyna-
mic adaptation, comparing its performance 

against a wider range of benchmarks, inclu-
ding a classic PID.

DEVELOPMENT

To demonstrate the proposed techni-
que, this study utilizes a well-known case 
study from the literature: an industrial mixer 
process. This case was selected to illustrate 
the need for refining a model based on Fuz-
zy Cognitive Maps (FCM) that was initially 
built exclusively with expert knowledge.

Case Study: The Industrial Mixer 
Process

The process consists of a tank with 
two inlet valves (V1 and V2) for different 
liquids, a mixer, an outlet valve (V3) for re-
moving the final product and a specific gra-
vity meter that measures the specific gravity 
of the liquid produced. For this study, the 
two liquids are water (specific gravity of 1.0) 
and soybean oil (specific gravity of approxi-
mately 0.9).

Valves V1 and V2 introduce the two 
different liquids into the tank. During the 
reaction, a new liquid with a unique speci-
fic gravity is produced. The outlet valve, V3, 
empties the tank according to a predeter-
mined campaign output flow, ensuring the 
final mixture meets specified volume and 
specific gravity levels. Although simple, this 
process is a Two-Inputs and Two-Outputs 
(TITO) system with coupled variables. To 
monitor the quality of the fluid, a weighting 
machine in the tank measures its specific 
gravity.
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Process Modeling and Control 
Objectives

The objective of control is to maintain 
the mixture’s volume (V) and mass (G) wi-
thin their specified operating ranges. The 
desired mixed liquid is ready when its mass 
falls within the range , ]  and it 
can only be removed when its volume is wi-
thin the range [ ].

The operational constraints are de-
fined as:

                         (1)

                          (2)

In this study, the target range for mass 
is 810 to 850 mg, and for volume, it is 840 
to 880 ml. The initial values are 800 mg for 
mass and 850 ml for volume.

Following the methodology of Papa-
georgiou et al. [23], experts can define key 
concepts related to the physical process. The 
concepts for the cognitive model are:

•	 Concept 1: State of valve V1 (clo-
sed, open, or partially open);

•	 Concept 2: State of valve V2 (clo-
sed, open, or partially open);

•	 Concept 3: State of valve V3 (clo-
sed, open, or partially open);

•	 Concept 4: Quantity of mixture 
(volume) in the tank, dependent 
on the state of valves V1, V2, and 
V3.

•	 Concept 5: Value of the specific 
gravity measured by the G sensor.

The process model is derived from the 
principle of mass conservation in an incom-
pressible fluid, resulting in a set of differen-
tial equations. The initial volume plus the 
inflow from valves V1 and V2, minus the 
outflow from valve V3, determines the tank 
volume. The mass of the tank follows the 
same principle, where the specific gravities 
for the liquids from V1 (​) and V2 (​) are 1.0 
and 0.9, respectively.

           (3)

          (4)

Proportional-Integral-Derivative 
(PID) Controller Development

In addition to the intelligent control-
lers, a classic Proportional-Integral-Deriva-
tive (PID) controller was implemented to 
provide a standard industrial benchmark. 
The strategy employs a decoupled control 
architecture using two independent PID 
controllers to manage the TITO system.

1.	 Level Controller (PID-L): This 
regulates the total mixture volume 
( ) by controlling the sum of the 
inlet flows ( ​). It uses the 
volume error ( ) and in-
cludes a feedforward term to reject 
the outlet flow (​ ) disturbance.

2.	 Density Controller (PID-R): 
This regulates the specific gravi-
ty ( ) by controlling the diffe-
rence between the inlet flows (

It uses the density 
error ( ).
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The outputs are mapped to the in-
dividual valves ( ) ;

 .A back-calculation an-
ti-windup mechanism was applied to both 
controllers to manage saturation.

Logical Reasoning of the Heuristic 
Control Strategy

This section details the core logical re-
asoning; that defines the heuristic control 
strategy for the industrial mixer. This logic 
serves as the fundamental basis for both the 
benchmark Fuzzy controller and the propo-
sed DFCM controller, ensuring the subse-
quent comparison is based on the same un-
derlying control principles.

To formally implement this logic as a 
benchmark, a standard Fuzzy controller de-
veloped would be a process controller. Fuz-
zy logic is well-suited for creating effective 
nonlinear controllers, even with impreci-
se plant models, and has a long history of 
application in process control.

While a detailed discussion of the Fu-
zzy controller’s specific implementation is 
outside the scope of this paper, its key featu-
res include triangular and trapezoidal mem-
bership functions and a rule base with nine 
rules. As noted, this rule base (shown below) 
encapsulates the shared logical reasoning for 
both controllers. The rules are symmetri-
cal, making the control surface for valve V1 
identical to that of valve V2.

•	 If (Level is low) then (  is me-
dium) (  is medium) (1)

•	 If (Level is medium) then ( is 
low) (  is low) (1)

•	 If (Level is high) then (  is low) 
(  is low) (1)

•	 If (Weight is low) then (  is 
high) (  is high) (1)

•	 If (Weight is medium) then (  is 
low) ( is low) (0.5)

•	 If (Weight is high) then (  is 
low) ( is low) (1)

•	 If (ValveOut is high) then (  is 
high) ( is high) (0.5)

•	 If (ValveOut is medium) then (  
is medium) ( is medium) (0.5)

•	 If (ValveOut is low) then (  is 
low) ( is low) (0.5)

This logic forms the complete defini-
tion for the Fuzzy Logic benchmark con-
troller. The subsequent section will detail 
how this same heuristic strategy translated 
into the causal structure of the Dynamic 
Fuzzy Cognitive Map (DFCM).

Hybrid Fuzzy-ANN Controller

Another benchmark would be a se-
quential hybrid model also created by con-
necting two subsystems in series. A Fuzzy-
ANN cascade controller was developed 
where an Artificial Neural Network (a mul-
tilayer perceptron) was trained using the 
output data from the Fuzzy controller. The 
network topology was selected empirically, 
resulting in a single hidden layer with two 
hundred neurons. The training dataset con-
sisted of 6,000 points from within the con-
trol region, Fuzzy Logic, and this controller 
we simulated, or the model simulates.

Dynamic Fuzzy Cognitive Map 
(DFCM) Controller Development

A DFCM is used to control the mixer, 
with the objective of maintaining volume 
and mass within the specified limits. The 
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development of the DFCM controller was 
conducted in three distinct stages.

Stage 1: Structural Definition

First, the DFCM structure was defined 
with concepts and causal relationships, like 
a classic FCM. The concepts correspond 
to process variables (sensors) and control 
actions (actuators). The control heuristic is 
like the Fuzzy controller: if the outflow from 
V3 increases, the inflow from V1 and V2 
also increases (a positive relationship). Con-
versely, if the mixture’s volume or weight 
increases, the inflow from V1 and V2 de-
creases (a negative relationship).

Stage 2: Initial Weight Optimization via 
Genetic Algorithm (GA)

•	 While previous iterations on this 
problem utilized Simulated Anne-
aling for weight optimization, this 
study employed a Genetic Algori-
thm (GA) to determine the initial 
values of the causal relationships 
(weights) offline. The GA parame-
ters were.

•	 Recombination Method: Single-
-point crossover.

•	 Mutation Method: Randomly 
chosen.

•	 Selection Method: Tournament.

•	 Population Size: thirty 
chromosomes.

•	 Fitness Function E(i): The func-
tion considers the overall error of 
the two desired outputs over 15 
generations. It is given by:

(5)

The GA stabilizes and finds an initial 
solution for the valve openings at approxi-
mately 44% for V1 and 42% for V2. The 
initial weights obtained are shown in Table 
1.

Initial Causal Relationship Weights
W13 -0.2647
W14 -0.324
W23 -0.2831
W24 -0.3339
W53 0.2648
W54 0.2754

Table 1: Initial Causal Relationship Weights 

Stage 3: Dynamic Tuning with 
Hebbian Learning

The third stage involves refining the 
model for dynamic response. When a set 
point changes, the weights are dynamically 
adjusted using an adaptation of the classic 
Hebbian learning algorithm. This algorithm 
provides online control actions: if the mix-
ture’s weight or volume increases, the nega-
tive causal relationship for the inlet valves 
is intensified, causing them to close faster. 
Conversely, if the weight or volume decrea-
ses, the relationship is positively intensified. 
The update rule is:

          (6)

Where: ​ is the concept variation re-
sulting from a causal relationship given by 
, and  is the learning rate at iteration . An 
adapted version of this rule was applied in 
this work:

 	 (7)



DOI https://doi.org/10.22533/at.ed.3175825011014

A
rt

ic
le

 1
4

CL
A

SS
IC

 A
N

D
 G

EN
ER

AT
IV

E 
IN

TE
LL

IG
EN

T 
CO

N
TR

O
L 

A
PP

LI
ED

 T
O

 IN
D

U
ST

RI
A

L 
M

IX
ER

S,
 W

IT
H

 IM
PR

O
VE

M
EN

TS
 IN

 Q
UA

LI
TY

, M
A

N
A

G
EM

EN
T, 

SA
FE

TY
, A

M
O

N
G

 O
TH

ER
S

9

Here,   for all, and ​ is a pro-
portional gain determined empirically for 
each weight pair. The values are ​ for 
( ; ), for ( ; ), and 

for ( ; ), with normalized 
values.

This causal structure is visually repre-
sented in Figure 1. The diagram illustrates 
the five key concepts defined for the con-
troller: the process variable inputs ‘Vol-
ume’ (Concept 1), ‘V3’ (Concept 2), and 
‘Weight’ (Concept 5), which represent the 
sensors, and the control action outputs ‘V1’ 
(Concept 3) and ‘V2’ (Concept 4), which 
represent the actuators. The connections 
(e.g., W23−hebb​, W14−hebb​) represent 
the causal weights between these concepts, 
which are dynamically tuned by the Heb-
bian learning algorithm detailed in Stage 3.

Fig. 1. DFCM Structure

DFCM Inference and Stability

The inference mechanism for the 
DFCM is identical to that of a classic FCM, 
using the following equations:

	 (8)

	                (9)

The use of the sigmoid transfer func-
tion helps ensure the system’s stability, as 
the calculated values converge toward a spe-
cific value. Initial stability analyses for this 
type of system have been presented in pre-
vious works, often using methods like the 
contraction mapping theorem or by iden-
tifying a Lyapunov energy function. Since 
the DFCM uses the same core equations 
as a stable FCM but with dynamic tuning, 
the experimental results also demonstrate 
stability.

SIMULATED EXPERIMENTAL 
RESULTS

This chapter details the performance of 
the proposed DFCM controller and com-
pares it against three benchmarks: a classic 
Fuzzy Logic controller, a hybrid Fuzzy-
ANN controller, and a standard industrial 
PID controller. The analysis is based on the 
quantitative results from two distinct opera-
tional campaigns, one without disturbances 
(Table 2) and one with disturbances (Table 
3), as well as the qualitative performance of 
the PID benchmark (Figures 1-3).

Quantitative Analysis

Tables 2 and 3 provide a comprehen-
sive quantitative comparison of the four 
distinct control architectures evaluated in 
this study: the DFCM, Fuzzy Logic, Fuz-
zy-ANN, and classic PID. The simulated 
results clearly indicate that the performan-
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ce of the Dynamic Fuzzy Cognitive Map 
(DFCM) controller is superior to that of the 
other conventional controllers.

To evaluate performance, two key me-
trics were established: “Volume mix (mL) 
Max-min” and “Weight mix (mg) Max-
-min”. These metrics represent the total 
range of variation (i.e., oscillation) observed 
for each controlled variable throughout the 
entire simulation campaign. A lower nume-
rical value in these columns is desirable, as 
it corresponds to a higher degree of control 
precision and system stability, indicating 
that the controller successfully minimized 
deviation from the setpoint.

The controllers were evaluated across 
two distinct scenarios. Table 2 presents the 
baseline performance of each controller un-
der ideal, predictable operating conditions. 
Following this, Table 3 evaluates their com-
parative robustness and performance un-
der the introduction of simulated process 
disturbances.

DFCM Performance Analysis

The Dynamic Fuzzy Cognitive Map 
(DFCM) controller, the primary contribu-
tion of this study, was designed to provide 
a robust and adaptive solution for the in-
dustrial mixer process. Its performance was 
evaluated across two operational campaigns, 
both in a baseline scenario (Table 2) and 
in a more challenging scenario introducing 
disturbances (Table 3). The analysis of these 
quantitative results demonstrates a substan-
tial performance advantage over all imple-
mented benchmarks.

In the baseline simulation without 
disturbances (Table 2), the DFCM control-
ler demonstrated superior precision in the 
critical weight-control metric. The DFCM 

maintained the mixture weight within a 
10.74 mg range (Campaign 1) and volume 
within a 14.07 mL range. For comparison, 
the Fuzzy Logic controller’s weight variance 
was significantly higher at 22.87 mg, and 
the Classic PID controller had the weakest 
precision at 45.24 mg.

The most critical test, however, was the 
controller’s performance under disturbances 
(Table 3). This scenario highlights the core 
advantage of the DFCM’s adaptive nature. 
When disturbances were introduced, the 
simulated DFCM’s weight range remained 
highly precise at 14.69 mg (Campaign 1). 
In sharp contrast, the non-adaptive Classic 
PID controller’s performance degraded sig-
nificantly, with its weight range increasing 
to 52.50 mg (Campaign 1), demonstrating 
its lack of robustness.

In addition to the quantitative data, 
Figures 2 through 5 provide a qualitative 
visualization of the DFCM controller’s 
performance during one of the operation-
al campaigns. Figure 2 details the control 
action, showing the smooth adjustment of 
the inlet valves (V1 and V2) as they respond 
to the stepped changes in the outlet valves 
(V3) campaign flow. 

Figure 3 and Figure 4 illustrate the 
controller’s effective response for the pri-
mary variables, showing the Volume and 
Mass being steered from their initial states 
to their respective setpoints, where they are 
maintained stably within the operational 
bands. Figure 5 shows the corresponding 
successful stabilization of the specific gravity 
( ).

This adaptive capability stands in stark 
contrast to the non-adaptive controllers. 
The classic PID, while stable, saw its per-
formance degrade significantly under dis-
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Controller Campaign Volume mix (mL) 
Max-min Weight mix (mg) Max-min

DFCM
1 14.07 10.74
2 13.52 10.68

Fuzzy Logic
1 35.55 22.87
2 38.20 16.65

Fuzzy-ANN
1 36.69 25.31
2 38.11 25.28

Classic PID
1 39.07 45.24
2 37.62 44.43

Table 2: Quantitative Results without Disturbances

Controller Campaign Volume mix (mL) 
Max-min Weight mix (mg) Max-min

DFCM
1 13.82 14.69
2 14.79 14.31

Fuzzy Logic
1 35.51 28.02
2 38.12 20.64

Fuzzy-ANN
1 36.69 25.28
2 38.10 25.29

Classic PID
1 39.06 52.50
2 37.61 51.80

 Table 3: Quantitative Results with Disturbances
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Fig. 2. DFCM on both inlet valves

Fig. 3. Volume Liquid Mixture.
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Fig. 4. Mass of liquid mixture in DFCM Control

Fig. 5. Specific gravity in DFCM Control
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turbance. As shown by comparing Table 2 
and Table 3, the PID’s weight control error 
(Max-min) increased from 45.24 mg to 
52.50 mg. 

Fuzzy Logic and Fuzzy-ANN 
Performance Analysis

To emphasize advantages of the ap-
plying AI controllers according to previous 
cited articles, a robust validation for the pro-
posed DFCM, a standard Fuzzy Logic con-
troller was implemented as a key intelligent 
benchmark. This controller was developed 
using the same heuristic control strategy 
and operational conditions as the DFCM 
to ensure a fair and direct comparison. Ad-
ditionally, a hybrid Fuzzy-ANN controller 
was developed by training a neural network 
on the output data of the Fuzzy controller.

The quantitative results show that 
while the standard Fuzzy Logic controller 
provides stable control, it lacks the high pre-
cision of the DFCM. In the baseline sim-
ulation without disturbances (Table 2), the 
Fuzzy controller’s volume variation (Max-
min) was 35.55 mL in Campaign 1 and 
38.20 mL in Campaign 2. These values are 
more than double the variation exhibited 
by the DFCM (14.07 mL and 13.52 mL, 
respectively), indicating a much larger oscil-
lation around the desired setpoints.

When subjected to disturbances (Ta-
ble 3), the Fuzzy controller maintained its 
operational stability, with its volume varia-
tion remaining consistent at 35.51 mL and 
38.12 mL. However, unlike the adaptive 
DFCM which actively rejected the distur-
bance, the Fuzzy controller’s weight con-
trol precision degraded, increasing from 
22.87 mg to 28.02 mg in Campaign 1. This 
demonstrates that, as a non-adaptive in-

telligent controller, it is more precise than 
the classic PID but is still susceptible to un-
modeled dynamics and cannot match the 
robustness of the Hebbian-tuned DFCM.

Furthermore, the sequential hybrid 
Fuzzy-ANN controller did not offer a sig-
nificant performance improvement over the 
standard Fuzzy controller, producing identi-
cal quantitative results in both baseline and 
disturbance scenarios (Tables 2 and 3). This 
reinforces the conclusion that the adaptive 
mechanism of DFCM provides a unique 
performance advantage that is not present 
in these other intelligent benchmarks.

PID Control Performance Analysis

The performance of the classic PID 
controller, implemented as an industrial 
benchmark, is shown in Figures 6 through 
9. Figure 6 details the action of the inlet 
valves (V1 and V2), which correctly adjust 
their flow rates in response to the stepped 
disturbances from the outlet valve (V3). 

Figure 7 shows the volume control, 
which successfully brings the mixture from 
its initial state (approx. 830 ml) to the 870 
ml setpoint, maintaining it firmly within 
the [840, 880] ml operational band.

Figure 8 and Figure 9 demonstrate the control of 
the mixture’s properties, steering Mass and Spe-
cific Gravity (ρ) from their initial states (800 mg 
and 0.94, respectively) to their setpoints, where 
they are held within their required operational 

bands.

A direct qualitative comparison betwe-
en the two sets of figures (Figures 2-5 for 
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Fig. 6. PID on both inlet valves

Fig. 7. Volume Liquid Mixture in PID Control
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Fig. 8. Mass of Liquid Mixture in PID Control

Fig.9. Specific Gravity PID Control.
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the DFCM and Figures 6-9 for the PID) 
provides an initial validation of the pro-
posed controller. While both systems suc-
cessfully steer the process variables to their 
respective setpoints and maintain stability, 
the control action of the DFCM (Figure 2) 
demonstrates a smoother, more continuous 
adjustment of the inlet valves. This contrasts 
with the stepped, discrete actions of the 
classic PID (Figure 6). This visual eviden-
ce, which suggests a more refined and stable 
response from the DFCM, is quantitatively 
confirmed in the following section, where 
the controllers are rigorously benchmarked 
for precision and robustness using the data 
from Tables 2 and 3.

Comparative Performance 
Evaluation

According to 4.3 comprehensive eval-
uation of the controllers, based on the quan-
titative data presented in Tables 2 and 3, 
was performed to benchmark the proposed 
DFCM against the Fuzzy Logic, Fuzzy-
ANN, and classic PID controllers. The 
analysis focused on two primary metrics: 
control precision under baseline conditions 
and performance robustness under the in-
troduction of disturbances.

Regarding control precision (Table 
2), the DFCM exhibited the lowest maxi-
mum-minimum (Max-min) variation for 
both process variables across both cam-
paigns. In Campaign 1, the DFCM’s weight 
variation was 10.74 mg. This value contrasts 
significantly with the Fuzzy Logic control-
ler, which registered a variation of 22.87 
mg, and the classic PID, which demonstrat-
ed the highest variation at 45.24 mg. This 
quantitative data indicates a superior steady-
state accuracy and lower oscillation for the 
DFCM model.

The most critical distinction, howev-
er, was observed in the robustness analysis 
(Table 3). When subjected to disturbances, 
the DFCM’s performance remained excep-
tionally consistent, with its weight variation 
(14.69 mg in Campaign 1) showing only a 
marginal deviation from the baseline. This 
stability is attributed to its adaptive Hebbian 
learning mechanism, which actively com-
pensates for unmodeled process dynamics 
in real-time. Conversely, the non-adaptive 
benchmarks exhibited measurable perfor-
mance degradation. The classic PID control-
ler’s weight control error increased to 52.50 
mg, while the static Fuzzy Logic controller’s 
error also rose, increasing to 28.02 mg.

In summary, the simulation data in-
dicates that the proposed DFCM control-
ler provides superior performance in both 
precision and robustness when compared to 
the implemented static-intelligent (Fuzzy, 
Fuzzy-ANN) and classic industrial (PID) 
benchmarks for this process.

Performance Metrics and 
Computational Complexity

In addition to control performance, 
metrics related to the computational load 
of the intelligent controllers were evaluated. 
The total simulation processing time was re-
corded on the same computer to provide a 
comparative baseline.

The results indicated that the proces-
sing times for the Fuzzy Logic and DFCM 
controllers were highly comparable. A sli-
ght, consistent advantage was observed for 
the DFCM, which completed the simula-
tions marginally faster than the Fuzzy Logic 
controller. This finding is consistent with 
the theoretical structure of the controllers; 
the DFCM’s inference relies primarily on 
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simple matrix multiplication and a sigmoid 
function, whereas the Fuzzy Logic control-
ler must evaluate a rule base.

As noted, a formal quantitative analy-
sis of the algorithm’s computational comple-
xity was not within the scope of this study. 

CONCLUSIONS

This study makes a notable contribu-
tion by applying Dynamic Fuzzy Cognitive 
Maps to an industrial control problem. The 
results, based on extensive simulation, in-
dicate that the Dynamic Fuzzy Cognitive 
Map (DFCM) controller performs better 
than the other controllers evaluated: Fuzzy 
Logic, Fuzzy-ANN, and the classic Propor-
tional-Integral-Derivative (PID) controller.

A key finding is the superior robust-
ness of the adaptive DFCM. The quantita-
tive analysis showed that while the DFCM 
maintained consistent, high-precision per-
formance in scenarios with and without dis-
turbances, the classic PID controller’s per-
formance degraded significantly when faced 
with the same disturbances. This highlights 
the practical advantage of the DFCM’s 
Hebbian learning mechanism in adapting 
to unmodeled dynamics, a critical weakness 
of the non-adaptive PID. While the Fuzzy-
ANN controller did not offer a significant 
improvement over the standard Fuzzy con-
troller, it did provide a slight reduction in 
noise. Furthermore, the simplicity of the 
DFCM’s inference process suggests low 
computational complexity.

Future research will focus on a formal 
quantitative analysis of the DFCM’s com-
putational complexity to draw more gener-
alized conclusions. Additionally, we plan to 
obtain and analyze results from a real-world 

prototype to validate these simulated find-
ings. This would leverage advanced machine 
learning libraries, improve the reproducibil-
ity of experiments, and facilitate more com-
plex simulation scenarios.
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