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Abstract: This study presents the application
of intelligent control techniques to an in-
dustrial mixing process. The proposed con-
troller designed based on a Hebbian adap-
tation of the Fuzzy Cognitive Map (FCM)
learning mechanism, which results in a Dy-
namic Fuzzy Cognitive Map (DFCM) mo-
del. The research develops and validates this
DFCM using Hebbian learning algorithms
to improve adaptability and robustness in
nonlinear industrial systems. To ensure re-
liability, a classical fuzzy controller and a
standard ~ Proportional-Integral-Derivati-
ve (PID) controller implemented as ben-
chmarks to validate the simulation results of
the DFCM-based control for the industrial
mixer. Extensive simulation experiments
conducted to compare the performance
of the controllers. The results demonstrate
that the proposed DFCM provides superior
performance in adaptability and robustness
compared to the benchmarks, while also su-
ggesting low computational complexity for
practical implementation.

Keywords: Fuzzy Cognitive Maps, Heb-
bian Learning, Process Control, Fuzzy Lo-

gic, Artificial Neural Network.

INTRODUCTION

In general, some of the difficulties fou-
nd in acquiring knowledge in different areas
of engineering (such as robotics, Control or
process control) are: how to recognize the
processes /systems; how to identify impor-
tant variables and parameters; to classify
the type of physical problem; o identify the
family of mathematical models that can be
associated; to select the method and/or tool
for the search and analysis of the model.

Indeed, the final output of modern
processes significantly influenced by the
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selection of the set points for the process
variables, as they fundamentally impact
product quality characteristics and process
performance metrics (Marchal; Garcfa; Or-
tega, 2017).

This work serves as a direct evolution
of the study presented by Mendonga ez al.
(2017). While the previous work established
and validated the DFCM (Dynamic Fuzzy
Cognitive Map) controller, the proposal of
this new article is to significantly expand
that analysis. The main contributions of this
evolution are: (1) the introduction of a Ge-
netic Algorithm (GA) for the offline optimi-
zation of the controller’s initial weights, and
(2) a more robust benchmarking analysis,
comparing the DFCM’s performance not
only against Fuzzy-ANN controllers but
also notably against a classic Proportional-
-Integral-Derivative (PID) controller, which
serves as a standard industrial benchmark

The article proposal is to use a diffe-
rent setup, specifically the initial state and
a comparison with a new controller using
Fuzzy-Logic with ANN (artificial neural
network). The motivation for this research
is the development of optimal control the-
ory, robust Control, and adaptive Control,
which significantly expands the automation
concept and studies the feasibility of auto-
nomous Control in practice.

On the other hand, intelligent con-
trol techniques take control actions without
depending on a complete or partial mathe-
matical model. Otherwise, the ability of a
human to find solutions to a particular pro-
blem is known as human intelligence. In
short, human beings can manage complex
processes based on inaccurate and/or appro-
ximate information. The strategy adopted
by them is also imprecise in nature and can
usually expressed in linguistic terms. Thus,
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by means of Fuzzy Logic concepts, it is pos-
sible to model this type of information (Za-

deh, 1992).

Previous works that used Fuzzy tech-
niques can cited, such as Fabro and Arruda
(2003), which applies a Fuzzy-Neuro pre-
dictive control tuned by Genetic Algorithms
(GA) on a fermentation process. A Propor-
tional Derivative Fuzzy Logic Controller
(Fuzzy-PD) initially used to control the pro-
cess, a nonlinear system with non-minimal
phase and ample accommodation time.

More recently, Yesil, Kumbasar and
Karasakal (2013) presented an FCM used
to tune the parameters of PI controllers on a
nonlinear system. These controllers cannot
achieve satisfactory results in this type of
system due to the difference in their static
and dynamic properties.

There is also Mendonga ez al. (2012),
where new types of concepts and relations,
not restricted to cause-effect ones, added
to the model, resulting in a dynamic fuzzy
cognitive map (DFCM). In this sense, a su-
pervisory system developed to control the
fermentation process.

BACKGROUND

Fuzzy Cognitive Maps (FCM) intro-
duced by Kosko’s work, which added Fuzzy
values to the causal relationships of Axelrod’s
Cognitive Maps paper. In fact, FCMs are
system models that represent a graph form,
where the nodes represent concepts related
to the problem, and the lines connecting
them represent the causal relationships be-
tween these concepts. An FCM is a 4-tuple,
as described in works as Stach ez 2/ (2005)
and Arruda e al. (2016). It is used to stu-
dy the dynamics of systems due to its ma-
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thematical simplicity. The relationship’s in-
fluence is calculated using normalized states
and matrix multiplications.

The system’s dynamics may converge
into a steady state, a limit cycle of states, or
even a chaotic state Kosko (1992) and Lee
(2003). Every concept’s activation level is
based on its own previous iteration and the
propagated weighted values of all the con-
cepts connected to it (it means all concepts
that influence it).

In the literature, numerous examples
of FCMs exist that utilize monotonic and
symmetric cause-and-effect relationships
between concepts. Although these rela-
tionships may be effective in controlled
environments, they cannot apply in the
real world due to their dynamic aspects. To
bring FCM:s to more realistic environments,
several techniques can be employed, such as
using Fuzzy rules and feedback mechanis-
ms Carvalho and Tome (2009) or algebraic
equations to define causal relationships
when the real system has modeled using
crisp relations Aguilar (2004).

In general, a Fuzzy Cognitive Map
(FCM) is a tool for modeling human know-
ledge and understanding. It can obtain
through linguistic terms inherent to Fuzzy
Systems, which have a structure like Arti-
ficial Neural Networks (ANN), facilitating
data processing and enabling capabilities for
training and adaptation. FCM is a techni-
que based on knowledge that inherits cha-
racteristics of Cognitive Maps and Artificial
Neural Networks (Kosko, 1986; Kosko
1992), with applications in different areas
of knowledge (Lee, 2003; Mendonga ez al.,
2017).

In addition to the advantages and cha-
racteristics inherited from these primary te-
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chniques, FCM initially proposed as a tool
for building models or cognitive maps in va-
rious fields of knowledge. It makes the tool
easier to abstract the information necessary
for modeling complex systems, which are
similar in construction to human reasoning.

Dynamic Fuzzy Cognitive Maps
(DFCM) need to develop into a model that
can manage the behaviors of nonlinear, ti-
me-dependent systems, and sometimes in
real-time. Examples of different variations
of the classic FCMs can found in recent lite-
rature, e.g., (Papageorgiou, 2013).

This paper has two objectives. The first
objective is to develop two controllers using
an acyclic DFCM, with the same knowled-
ge as a Fuzzy and Fuzzy Neural controller,
and with similar heuristics, thus producing
comparable simulated results.

To achieve the goals, we initially used
a similar DFCM proposed initially in Men-
donga ez al. (2013) to control an industrial
mixing tank. The Hebbian algorithm used
to dynamically adapt the DFCM weights.
To validate the DFCM controller, its perfor-
mance compared with that of a Fuzzy Lo-
gic controller. This comparison conducted
using simulated data.

Previous work by Mendonga et al.
(2013) applied a DFCM to this same indus-
trial mixer problem, laying the groundwork
for the present study. In that approach, the
controller’s initial weights optimized using
Simulated Annealing, and dynamic adapta-
tion explored using both Hebbian Learning
and a rule-based selection mechanism (DT-
-FCM). This paper builds upon that foun-
dation by introducing a Genetic Algorithm
(GA) for offline optimization and focusing
on a refined Hebbian algorithm for dyna-
mic adaptation, comparing its performance
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against a wider range of benchmarks, inclu-
ding a classic PID.

DEVELOPMENT

To demonstrate the proposed techni-
que, this study utilizes a well-known case
study from the literature: an industrial mixer
process. This case was selected to illustrate
the need for refining a model based on Fuz-
zy Cognitive Maps (FCM) that was initially
built exclusively with expert knowledge.

Case Study: The Industrial Mixer
Process

The process consists of a tank with
two inlet valves (V1 and V2) for different
liquids, a mixer, an outlet valve (V3) for re-
moving the final product and a specific gra-
vity meter that measures the specific gravity
of the liquid produced. For this study, the
two liquids are water (specific gravity of 1.0)
and soybean oil (specific gravity of approxi-
mately 0.9).

Valves V1 and V2 introduce the two
different liquids into the tank. During the
reaction, a new liquid with a unique speci-
fic gravity is produced. The outlet valve, V3,
empties the tank according to a predeter-
mined campaign output flow, ensuring the
final mixture meets specified volume and
specific gravity levels. Although simple, this
process is a Two-Inputs and Two-Outputs
(TITO) system with coupled variables. To
monitor the quality of the fluid, a weighting

machine in the tank measures its specific

gravity.
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Process Modeling and Control
Objectives

The objective of control is to maintain
the mixture’s volume (V) and mass (G) wi-
thin their specified operating ranges. The
desired mixed liquid is ready when its mass
falls within the range [G i G,,] and it
can only be removed when its volume is wi-
thin the range (Vimins Vi)

The operational constraints are de-

fined as:

Vmin{ V{Vmax (1)

Grm'ri(' G<Gmax (2)

In this study, the target range for mass
is 810 to 850 mg, and for volume, it is 840
to 880 ml. The initial values are 800 mg for
mass and 850 ml for volume.

Following the methodology of Papa-
georgiou et al. [23], experts can define key
concepts related to the physical process. The
concepts for the cognitive model are:

*  Concept 1: State of valve V1 (clo-
sed, open, or partially open);

*  Concept 2: State of valve V2 (clo-
sed, open, or partially open);

*  Concept 3: State of valve V3 (clo-
sed, open, or partially open);

*  Concept 4: Quantity of mixture
(volume) in the tank, dependent
on the state of valves V1, V2, and
V3.

*  Concept 5: Value of the specific
gravity measured by the G sensor.
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The process model is derived from the
principle of mass conservation in an incom-
pressible fluid, resulting in a set of differen-
tial equations. The initial volume plus the
inflow from valves V1 and V2, minus the
outflow from valve V3, determines the tank
volume. The mass of the tank follows the
same principle, where the specific gravities
for the liquids from V1 () and V2 () are 1.0
and 0.9, respectively.

Vi =Vi#Vy i+ V- V, 3)

tank

Weight,,, = M|V, mes+ V,ome,- My, (4)

tank ~

Proportional-Integral-Derivative
(PID) Controller Development

In addition to the intelligent control-
lers, a classic Proportional-Integral-Deriva-
tive (PID) controller was implemented to
provide a standard industrial benchmark.
The strategy employs a decoupled control
architecture using two independent PID
controllers to manage the TITO system.

1. Level Controller (PID-L): This
regulates the total mixture volume
(V) by controlling the sum of the
inlet flows (Y t=v,+v,2). It uses the
volumeerror (e, =V ;- V) and in-
cludes a feedforward term to reject
the outlet low (V3) disturbance.

2. Density Controller (PID-R):
This regulates the specific gravi-
ty (p) by controlling the diffe-
rence between the inlet flows (
Uyg=V,-V,)It uses the density
error (eR=p”_,r-p).
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The outputs are mapped to the in-
dividual valves (V,=0.5 [u )
_ 1 z btuggé
VQ_O'S{HZ‘;.”“IH,})@ A back-calculation an-
ti-windup mechanism was applied to both

controllers to manage saturation.

Logical Reasoning of the Heuristic
Control Strategy

This section details the core logical re-
asoning; that defines the heuristic control
strategy for the industrial mixer. This logic
serves as the fundamental basis for both the
benchmark Fuzzy controller and the propo-
sed DFCM controller, ensuring the subse-
quent comparison is based on the same un-
derlying control principles.

To formally implement this logic as a
benchmark, a standard Fuzzy controller de-
veloped would be a process controller. Fuz-
zy logic is well-suited for creating effective
nonlinear controllers, even with impreci-
se plant models, and has a long history of
application in process control.

While a detailed discussion of the Fu-
zzy controller’s specific implementation is
outside the scope of this paper, its key featu-
res include triangular and trapezoidal mem-
bership functions and a rule base with nine
rules. As noted, this rule base (shown below)
encapsulates the shared logical reasoning for
both controllers. The rules are symmetri-
cal, making the control surface for valve V1
identical to that of valve V2.

o If (Level is low) then (V, is me-
dium) (V, is medium) (1)

o If (Level is medium) then ( Viis
low) (V, is low) (1)

e If (Level is high) then ( V; is low)
(V5 is low) (1)
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o If (Weight is low) then ( V, is
high) (V, is high) (1)

e If (Weight is medium) then (V, is
low) (is low) (0.5)

e If (Weight is high) then ( V, is
low) ( V,is low) (1)

e If (ValveOut is high) then ( v, is
high) ( V,is high) (0.5)

e If (ValveOut is medium) then (V,
is medium) ( Vis medium) (0.5)

e If (ValveOut is low) then ( v, is
low) ( V,is low) (0.5)

This logic forms the complete defini-
tion for the Fuzzy Logic benchmark con-
troller. The subsequent section will detail
how this same heuristic strategy translated

into the causal structure of the Dynamic
Fuzzy Cognitive Map (DFCM).

Hybrid Fuzzy-ANN Controller

Another benchmark would be a se-
quential hybrid model also created by con-
necting two subsystems in series. A Fuzzy-
ANN cascade controller was developed
where an Artificial Neural Network (a mul-
tilayer perceptron) was trained using the
output data from the Fuzzy controller. The
network topology was selected empirically,
resulting in a single hidden layer with two
hundred neurons. The training dataset con-
sisted of 6,000 points from within the con-
trol region, Fuzzy Logic, and this controller
we simulated, or the model simulates.

Dynamic Fuzzy Cognitive Map
(DFCM) Controller Development

A DFCM is used to control the mixer,
with the objective of maintaining volume
and mass within the specified limits. The
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development of the DFCM controller was
conducted in three distinct stages.

Stage 1: Structural Definition

First, the DFCM structure was defined
with concepts and causal relationships, like
a classic FCM. The concepts correspond
to process variables (sensors) and control
actions (actuators). The control heuristic is
like the Fuzzy controller: if the outflow from
V3 increases, the inflow from V1 and V2
also increases (a positive relationship). Con-
versely, if the mixture’s volume or weight
increases, the inflow from V1 and V2 de-
creases (a negative relationship).

Stage 2: Initial Weight Optimization via
Genetic Algorithm (GA)

*  While previous iterations on this
problem utilized Simulated Anne-
aling for weight optimization, this
study employed a Genetic Algori-
thm (GA) to determine the initial
values of the causal relationships
(weights) offline. The GA parame-

ters were.

e Recombination Method: Single-
-point crossover.

*  Mutation Method: Randomly
chosen.

¢ Selection Method: Tournament.

* Population Size: thirty

chromosomes.

e Fitness Function E(i): The func-
tion considers the overall error of
the two desired outputs over 15
generations. It is given by:

E5=\/(0-44' AS'k+1')2+(0'42_ A, K+l')2(5)
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The GA stabilizes and finds an initial
solution for the valve openings at approxi-
mately 44% for V1 and 42% for V2. The

initial weights obtained are shown in Table
1.

Initial Causal Relationship Weights
wi3 -0.2647
wi4 -0.324
w23 -0.2831
w24 -0.3339
W53 0.2648
W54 0.2754

Table 1: Initial Causal Relationship Weights

Stage 3: Dynamic Tuning with
Hebbian Learning

The third stage involves refining the
model for dynamic response. When a set
point changes, the weights are dynamically
adjusted using an adaptation of the classic
Hebbian learning algorithm. This algorithm
provides online control actions: if the mix-
ture’s weight or volume increases, the nega-
tive causal relationship for the inlet valves
is intensified, causing them to close faster.
Conversely, if the weight or volume decrea-
ses, the relationship is positively intensified.

The update rule is:
W.‘[k]= W:'jk-li YA A, ©)

Where: is the concept variation re-
sulting from a causal relationship given by
, and is the learning rate at iteration . An
adapted version of this rule was applied in
this work:

W= kp'(wfjk-l' VﬂA;'} 7)

o |
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Here, y=1 for all, and k, is a pro-
portional gain determined empirically for
each weight pair. The values are k=40 for
(Wi W), k,=18 for (Wy3; W,,), and
k,=2.36 for (W_,; W,), with normalized
values.

This causal structure is visually repre-
sented in Figure 1. The diagram illustrates
the five key concepts defined for the con-
troller: the process variable inputs “Vol-
ume’ (Concept 1), V3’ (Concept 2), and
“Weight' (Concept 5), which represent the
sensors, and the control action outputs V1’
(Concept 3) and V2’ (Concept 4), which
represent the actuators. The connections
(e.g., W23-hebb, W14-hebb) represent
the causal weights between these concepts,
which are dynamically tuned by the Heb-
bian learning algorithm detailed in Stage 3.

Volume

Fig. 1. DFCM Structure

DFCM Inference and Stability

The inference mechanism for the
DFCM is identical to that of a classic FCM,

using the following equations:
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AT 2 AV
1
flx| 1+e ™ )

The use of the sigmoid transfer func-
tion helps ensure the system’s stability, as
the calculated values converge toward a spe-
cific value. Initial stability analyses for this
type of system have been presented in pre-
vious works, often using methods like the
contraction mapping theorem or by iden-
tifying a Lyapunov energy function. Since
the DFCM uses the same core equations
as a stable FCM but with dynamic tuning,
the experimental results also demonstrate

stability.

SIMULATED EXPERIMENTAL
RESULTS

This chapter details the performance of
the proposed DFCM controller and com-
pares it against three benchmarks: a classic
Fuzzy Logic controller, a hybrid Fuzzy-
ANN controller, and a standard industrial
PID controller. The analysis is based on the
quantitative results from two distinct opera-
tional campaigns, one without disturbances
(Table 2) and one with disturbances (Table
3), as well as the qualitative performance of

the PID benchmark (Figures 1-3).

Quantitative Analysis

Tables 2 and 3 provide a comprehen-
sive quantitative comparison of the four
distinct control architectures evaluated in
this study: the DFCM, Fuzzy Logic, Fuz-
zy-ANN, and classic PID. The simulated

results clearly indicate that the performan-
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ce of the Dynamic Fuzzy Cognitive Map
(DFCM) controller is superior to that of the
other conventional controllers.

To evaluate performance, two key me-
trics were established: “Volume mix (mL)
Max-min” and “Weight mix (mg) Max-
-min”. These metrics represent the total
range of variation (i.e., oscillation) observed
for each controlled variable throughout the
entire simulation campaign. A lower nume-
rical value in these columns is desirable, as
it corresponds to a higher degree of control
precision and system stability, indicating
that the controller successfully minimized
deviation from the setpoint.

The controllers were evaluated across
two distinct scenarios. Table 2 presents the
baseline performance of each controller un-
der ideal, predictable operating conditions.
Following this, Table 3 evaluates their com-
parative robustness and performance un-
der the introduction of simulated process
disturbances.

DFCM Performance Analysis

The Dynamic Fuzzy Cognitive Map
(DFCM) controller, the primary contribu-
tion of this study, was designed to provide
a robust and adaptive solution for the in-
dustrial mixer process. Its performance was
evaluated across two operational campaigns,
both in a baseline scenario (Table 2) and
in a more challenging scenario introducing
disturbances (Table 3). The analysis of these
quantitative results demonstrates a substan-
tial performance advantage over all imple-
mented benchmarks.

In the baseline simulation without
disturbances (Table 2), the DFCM control-
ler demonstrated superior precision in the
critical weight-control metric. The DFCM
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maintained the mixture weight within a
10.74 mg range (Campaign 1) and volume
within a 14.07 mL range. For comparison,
the Fuzzy Logic controller’s weight variance
was significantly higher at 22.87 mg, and
the Classic PID controller had the weakest
precision at 45.24 mg.

The most critical test, however, was the
controller’s performance under disturbances
(Table 3). This scenario highlights the core
advantage of the DFCM’s adaptive nature.
When disturbances were introduced, the
simulated DFCM’s weight range remained
highly precise at 14.69 mg (Campaign 1).
In sharp contrast, the non-adaptive Classic
PID controller’s performance degraded sig-
nificantly, with its weight range increasing
to 52.50 mg (Campaign 1), demonstrating
its lack of robustness.

In addition to the quantitative data,
Figures 2 through 5 provide a qualitative
visualization of the DFCM controllers
performance during one of the operation-
al campaigns. Figure 2 details the control
action, showing the smooth adjustment of
the inlet valves (V1 and V2) as they respond
to the stepped changes in the outlet valves
(V3) campaign flow.

Figure 3 and Figure 4 illustrate the
controller’s effective response for the pri-
mary variables, showing the Volume and
Mass being steered from their initial states
to their respective setpoints, where they are
maintained stably within the operational
bands. Figure 5 shows the corresponding
successful stabilization of the specific gravity

(p)-
This adaptive capability stands in stark

contrast to the non-adaptive controllers.
The classic PID, while stable, saw its per-
formance degrade significantly under dis-
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. Volume mix (mL) . . .
Controller Campaign Max-min Weight mix (mg) Max-min
1 14.07 10.74
DFCM
2 13.52 10.68
] 1 35.55 22.87
Fuzzy Logic
2 38.20 16.65
1 36.69 25.31
Fuzzy-ANN
2 38.11 25.28
1 39.07 45.24
Classic PID
2 37.62 4443
Table 2: Quantitative Results without Disturbances
. Volume mix (mL) . . .
Controller Campaign Max-min Weight mix (mg) Max-min
1 13.82 14.69
DFCM
2 14.79 14.31
1 35.51 28.02
Fuzzy Logic
2 38.12 20.64
1 36.69 25.28
Fuzzy-ANN
2 38.10 25.29
1 39.06 52.50
Classic PID
2 37.61 51.80

Table 3: Quantitative Results with Disturbances
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DFCM on both inlet valves

8 1 Valve 1
— Valve 2
— Valve OUT
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Iteration

Fig. 2. DFCM on both inlet valves

Volume liquid mixture (DFCM control)
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Fig. 3. Volume Liquid Mixture.
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Fig. 4. Mass of liquid mixture in DFCM Control

Specific gravity (DFCM control)
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Fig. 5. Specific gravity in DFCM Control
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turbance. As shown by comparing Table 2
and Table 3, the PID’s weight control error
(Max-min) increased from 45.24 mg to
52.50 mg.

Fuzzy Logic and Fuzzy-ANN
Performance Analysis

To emphasize advantages of the ap-
plying Al controllers according to previous
cited articles, a robust validation for the pro-
posed DFCM, a standard Fuzzy Logic con-
troller was implemented as a key intelligent
benchmark. This controller was developed
using the same heuristic control strategy
and operational conditions as the DFCM
to ensure a fair and direct comparison. Ad-
ditionally, a hybrid Fuzzy-ANN controller
was developed by training a neural network
on the output data of the Fuzzy controller.

The quantitative results show that
while the standard Fuzzy Logic controller
provides stable control, it lacks the high pre-
cision of the DFCM. In the baseline sim-
ulation without disturbances (Table 2), the
Fuzzy controller’s volume variation (Max-
min) was 35.55 mL in Campaign 1 and
38.20 mL in Campaign 2. These values are
more than double the variation exhibited
by the DFCM (14.07 mL and 13.52 mL,
respectively), indicating a much larger oscil-
lation around the desired setpoints.

When subjected to disturbances (Ta-
ble 3), the Fuzzy controller maintained its
operational stability, with its volume varia-
tion remaining consistent at 35.51 mL and
38.12 mL. However, unlike the adaptive
DFCM which actively rejected the distur-
bance, the Fuzzy controller’s weight con-
trol precision degraded, increasing from
22.87 mg to 28.02 mg in Campaign 1. This
demonstrates that, as a non-adaptive in-
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telligent controller, it is more precise than
the classic PID but is still susceptible to un-
modeled dynamics and cannot match the

robustness of the Hebbian-tuned DFCM.

Furthermore, the sequential hybrid
Fuzzy-ANN controller did not offer a sig-
nificant performance improvement over the
standard Fuzzy controller, producing identi-
cal quantitative results in both baseline and
disturbance scenarios (Tables 2 and 3). This
reinforces the conclusion that the adaptive
mechanism of DFCM provides a unique
performance advantage that is not present
in these other intelligent benchmarks.

PID Control Performance Analysis

The performance of the classic PID
controller, implemented as an industrial
benchmark, is shown in Figures 6 through
9. Figure 6 details the action of the inlet
valves (V1 and V2), which correctly adjust
their flow rates in response to the stepped
disturbances from the outlet valve (V3).

Figure 7 shows the volume control,
which successfully brings the mixture from
its initial state (approx. 830 ml) to the 870
ml setpoint, maintaining it firmly within

the [840, 880] ml operational band.

Figure 8 and Figure 9 demonstrate the control of
the mixture’s properties, steering Mass and Spe-
cific Gravity (p) from their initial states (800 mg
and 0.94, respectively) to their setpoints, where
they are held within their required operational
bands.

A direct qualitative comparison betwe-
en the two sets of figures (Figures 2-5 for

14

CLASSIC AND GENERATIVE INTELLIGENT CONTROL APPLIED TO INDUSTRIAL MIXERS, WITH IMPROVEMENTS IN QUALITY, MANAGEMENT, SAFETY, AMONG OTHERS

<
o)

]
Z
<




PID on both inlet valves

— Valve 1 (V1)
— Valve 2 (V2)
— Valve OUT (V3)

880

870

Volume

830

ees DOI https://doi.org/10.22533/at.ed. 3175825011014

100 150 200 250 300 350 400
lteration

Fig. 6. PID on both inlet valves
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Fig. 7. Volume Liquid Mixture in PID Control
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the DFCM and Figures 6-9 for the PID)
provides an initial validation of the pro-
posed controller. While both systems suc-
cessfully steer the process variables to their
respective setpoints and maintain stability,
the control action of the DFCM (Figure 2)
demonstrates a smoother, more continuous
adjustment of the inlet valves. This contrasts
with the stepped, discrete actions of the
classic PID (Figure 6). This visual eviden-
ce, which suggests a more refined and stable
response from the DFCM, is quantitatively
confirmed in the following section, where
the controllers are rigorously benchmarked
for precision and robustness using the data

from Tables 2 and 3.

Comparative Performance
Evaluation

According to 4.3 comprehensive eval-
uation of the controllers, based on the quan-
titative data presented in Tables 2 and 3,
was performed to benchmark the proposed
DFCM against the Fuzzy Logic, Fuzzy-
ANN, and classic PID controllers. The
analysis focused on two primary metrics:
control precision under baseline conditions
and performance robustness under the in-
troduction of disturbances.

Regarding control precision (Table
2), the DFCM exhibited the lowest maxi-
mum-minimum (Max-min) variation for
both process variables across both cam-
paigns. In Campaign 1, the DFCM’s weight
variation was 10.74 mg. This value contrasts
significantly with the Fuzzy Logic control-
ler, which registered a variation of 22.87
mg, and the classic PID, which demonstrat-
ed the highest variation at 45.24 mg. This
quantitative data indicates a superior steady-
state accuracy and lower oscillation for the

DFCM model.
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The most critical distinction, howev-
er, was observed in the robustness analysis
(Table 3). When subjected to disturbances,
the DFCM’s performance remained excep-
tionally consistent, with its weight variation
(14.69 mg in Campaign 1) showing only a
marginal deviation from the baseline. This
stability is attributed to its adaptive Hebbian
learning mechanism, which actively com-
pensates for unmodeled process dynamics
in real-time. Conversely, the non-adaptive
benchmarks exhibited measurable perfor-
mance degradation. The classic PID control-
ler’s weight control error increased to 52.50
mg, while the static Fuzzy Logic controller’s
error also rose, increasing to 28.02 mg.

In summary, the simulation data in-
dicates that the proposed DFCM control-
ler provides superior performance in both
precision and robustness when compared to
the implemented static-intelligent (Fuzzy,
Fuzzy-ANN) and classic industrial (PID)
benchmarks for this process.

Performance Metrics and
Computational Complexity

In addition to control performance,
metrics related to the computational load
of the intelligent controllers were evaluated.
The total simulation processing time was re-
corded on the same computer to provide a
comparative baseline.

The results indicated that the proces-
sing times for the Fuzzy Logic and DFCM
controllers were highly comparable. A sli-
ght, consistent advantage was observed for
the DFCM, which completed the simula-
tions marginally faster than the Fuzzy Logic
controller. This finding is consistent with
the theoretical structure of the controllers;
the DFCM’s inference relies primarily on
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simple matrix multiplication and a sigmoid
function, whereas the Fuzzy Logic control-
ler must evaluate a rule base.

As noted, a formal quantitative analy-
sis of the algorithm’s computational comple-
xity was not within the scope of this study.

CONCLUSIONS

This study makes a notable contribu-
tion by applying Dynamic Fuzzy Cognitive
Maps to an industrial control problem. The
results, based on extensive simulation, in-
dicate that the Dynamic Fuzzy Cognitive
Map (DFCM) controller performs better
than the other controllers evaluated: Fuzzy
Logic, Fuzzy-ANN, and the classic Propor-
tional-Integral-Derivative (PID) controller.

A key finding is the superior robust-
ness of the adaptive DFCM. The quantita-
tive analysis showed that while the DFCM
maintained consistent, high-precision per-
formance in scenarios with and without dis-
turbances, the classic PID controller’s per-
formance degraded significantly when faced
with the same disturbances. This highlights
the practical advantage of the DFCM’s
Hebbian learning mechanism in adapting
to unmodeled dynamics, a critical weakness
of the non-adaptive PID. While the Fuzzy-
ANN controller did not offer a significant
improvement over the standard Fuzzy con-
troller, it did provide a slight reduction in
noise. Furthermore, the simplicity of the
DFCM’s inference process suggests low
computational complexity.

Future research will focus on a formal
quantitative analysis of the DFCM’s com-
putational complexity to draw more gener-
alized conclusions. Additionally, we plan to
obtain and analyze results from a real-world

DOI https://doi.org/10.22533/at.ed.3175825011014

prototype to validate these simulated find-
ings. This would leverage advanced machine
learning libraries, improve the reproducibil-
ity of experiments, and facilitate more com-
plex simulation scenarios.
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